Skip to main content
Log in

Multicomponent Taylor Dispersion Coefficients

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The Taylor dispersion method introduced by Pratt and Wakeham has won popularity for reliable and convenient mutual diffusion measurements. The usual procedure is to inject a pulse of excess solute into a carrier stream of solution and to monitor the broadened solute peak with a refractometer detector at the outlet of a capillary tube. Binary diffusion coefficients (D) are calculated by fitting concentration profiles from the Taylor–Aris equation ∂C/∂t = K2 C/∂x 2 to the detector signal, using K = D + (R 2 U 2/48D) for the dispersion coefficient of solute flowing at mean speed U in a tube of radius R. The Taylor method is also used to measure multicomponent diffusion coefficients (D ij ) for the flux of solute i caused by the concentration gradient in solute j. In this paper, the relation between K and D for binary solutions is extended to calculate K ij coefficients for the generalized Taylor–Aris equations ∂C i /∂t = ΣK ij 2 C j /∂x 2 describing coupled dispersion in multicomponent solutions. If axial diffusion is negligible (usually the case for liquids), then the K ij and D ij matrices are inversely related: K = (R 2 U 2/48)D −1. Coupled dispersion and coupled mutual diffusion in aqueous LiCl + KCl solutions are discussed to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Woolf, L.A.: In: Wakeham, W.A., Nagashima, A., Sengers, J.V. (eds.) Measurement of the Transport Properties of Fluids, Blackwell Scientific, Oxford (1991)

  2. Erkey, C.: Akgerman, A. In: Wakeham, W.A., Nagashima, A., Sengers, J.V. (eds.) Measurement of the transport properties of fluids. Blackwell Scientific, Oxford (1991)

    Google Scholar 

  3. Leaist, D.G.: In: Wakeham, W.A., Nagashima, A., Sengers, J.V. (eds.) Measurement of the Transport Properties of Fluids, Blackwell Scientific, Oxford (1991)

  4. Miller, D.G.: Albright, J.G. In: Wakeham, W.A., Nagashima, A., Sengers, J.V. (eds.) Measurement of the Transport Properties of Fluids. Blackwell Scientific, Oxford (1991)

    Google Scholar 

  5. Tyrrell, H.J.V., Harris, K.R.: Diffusion in Liquids. Butterworths, London (1984)

    Google Scholar 

  6. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Academic, New York (1959)

    Google Scholar 

  7. Cussler, E.L.: Multicomponent diffusion. Elsevier, Amsterdam (1976)

    Google Scholar 

  8. Cussler, E.L.: Diffusion: mass transfer in fluid system. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  9. Alizadeh, A.: Nieto de Castro, C. A., Wakeham, W. A.: the theory of the Taylor dispersion technique for liquid diffusivity measurements. Int. J. Thermophys. 1, 243–284 (1980)

    Article  CAS  Google Scholar 

  10. Alizadeh, A.A., Wakeham, W.A.: Mutual diffusion coefficients for binary mixtures of normal alkanes. Int. J. Thermophys. 3, 307–323 (1982)

    Article  CAS  Google Scholar 

  11. Secuinu, C., Maitland, G.C., Martin Trusler, J.P., Wakeham, W.A.: Mutual diffusion coefficients of aqueous KCl at high pressures measured by the Taylor dispersion method. J. Chem. Eng. Data 56, 4840–4848 (2011)

    Article  Google Scholar 

  12. Pratt, K.C., Wakeham, W.A.: The mutual diffusion coefficient of ethanol–water mixtures: determination by a rapid new method. Proc. Roy. Soc. London A336, 393–406 (1974)

    Article  Google Scholar 

  13. Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. London A219, 186–203 (1953)

    Article  Google Scholar 

  14. Taylor, G.: Conditions under which dispersion of a solute in a stream can be used to measure molecular diffusion. Proc. Roy. Soc. London A225, 473–477 (1954)

    Article  Google Scholar 

  15. Aris, R.: On the dispersion of solute in a fluid flowing through a tube. Proc. Roy. Soc. London A235, 67–77 (1956)

    Article  Google Scholar 

  16. Vitagliano, V., Sartorio, R.: Some aspects of diffusion in ternary systems. J. Phys. Chem. 74, 2949–2956 (1970)

    Article  CAS  Google Scholar 

  17. Leaist, D.G., Lyons, P.A.: Electrolyte diffusion in multicomponent solutions. J. Phys. Chem. 86, 564–571 (1982)

    Article  CAS  Google Scholar 

  18. MacEwan, K., Leaist, D.G.: Incongruent diffusion (negative main mutual diffusion coefficient) for a ternary mixed surfactant system. J. Phys. Chem. B 106, 10296–10300 (2002)

    Article  CAS  Google Scholar 

  19. Leaist, D. G., Hao, L.: Diffusion in buffered protein solutions: combined Nernst–Planck and multicomponent Fick equations. J. Chem. Soc. Faraday Trans. 89, 2775 –2782 (1993)

  20. Moulins, J.R., MacNeil, J.A., Leaist, D.G.: Thermodynamic stability and the origins of incongruent and strongly coupled diffusion in solutions of micelles, solubilizates, and microemulsions. J. Chem. Eng. Data 54, 2371–2380 (2009)

    Article  CAS  Google Scholar 

  21. Clark, W.M., Rowley, R.L.: Ternary liquid diffusion coefficients near Plait points. Int. J. Thermophys. 6, 631–642 (1985)

    Article  CAS  Google Scholar 

  22. Grossmann, T., Winkelmann, J.: Ternary diffusion coefficients of cyclohexane + toluene + methanol by Taylor dispersion measurements at 298.15 K. Part 1. Toluene-rich area. J. Chem. Eng. Data 54, 405–410 (2009)

    Article  CAS  Google Scholar 

  23. van de Ven-Lucassen, I.M.J.J., Kerkhof, P.J.A.M.: Diffusion coefficients of ternary mixtures of water, glucose, and dilute ethanol, methanol, or acetone by the Taylor dispersion method. J. Chem. Eng. Data 44, 93–97 (1999)

    Article  Google Scholar 

  24. Ribeiro, A.C.F., Santos, C.I.A.V., Lobo, V.M.M., Cabral, A.M.T.D.: P. V., Veiga, F. J. B., Esteso, M. A.: Diffusion coefficients of the ternary system β-cyclodextrin + caffeine + water at 298.15 K. J. Chem. Eng. Data 54, 115–117 (2009)

    Article  CAS  Google Scholar 

  25. Vanag, V.K., Rossi, F., Cherkashin, A., Epstein, I.R.: Cross-diffusion in a water-in-oil microemulsion loaded with malonic acid or ferroin. Taylor dispersion method for four-component systems. J. Phys. Chem. B 112, 9058–9070 (2008)

    Article  CAS  Google Scholar 

  26. Deng, Z., Leaist, D.G.: Ternary mutual diffusion coefficients of MgCl2 + MgSO4 + H2O and Na2SO4 + MgSO4 + H2O from Taylor dispersion profiles. Can. J. Chem. 69, 1548–1553 (1991)

    Article  CAS  Google Scholar 

  27. Leaist, D.G.: Ternary diffusion coefficients of 18-crown-6 ether–KCl–water by direct least-squares analysis of Taylor dispersion profiles. J. Chem. Soc., Faraday Trans. 87, 597–601 (1991)

    Article  CAS  Google Scholar 

  28. MacEwan, K., Leaist, D.G.: Quaternary mutual diffusion coefficients for aqueous solutions of a cationic–anionic mixed surfactant from moments analysis of Taylor dispersion profiles. Phys. Chem. Chem. Phys. 5, 3951–3958 (2003)

    Article  CAS  Google Scholar 

  29. Leaist, D.G., Kanakos, M.A.: Measured and predicted ternary diffusion coefficients for concentrated aqueous LiCl + KCl solutions over a wide range of compositions. Phys. Chem. Chem. Phys. 2, 1015–1021 (2000)

    Article  CAS  Google Scholar 

  30. Leaist, D.G., Noulty, R.A.: An eigenvalue method for determination of multicomponent diffusion coefficients. Application to NaOH + NaCl + H2O mixtures. Can. J. Chem. 63, 476–482 (1985)

    Article  CAS  Google Scholar 

  31. Price, W.E.: Theory of the Taylor dispersion technique for three-component-system diffusion measurements. J. Chem. Soc., Faraday Trans. 1, 2431–2439 (1988)

    Article  Google Scholar 

Download references

Acknowledgments

Acknowledgment is made to the Natural Sciences and Engineering Research Council of Canada for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek G. Leaist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Leaist, D.G. Multicomponent Taylor Dispersion Coefficients. J Solution Chem 43, 2224–2237 (2014). https://doi.org/10.1007/s10953-014-0268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0268-y

Keywords

Navigation