Skip to main content

Liquid–Liquid Equilibria of Water + 1-Butanol + Amino Acid (Glycine or dl-Alanine or l-Leucine) at 313.15 K

Abstract

Amino acids play an important role both in animal metabolism and in industrial processes. Since they are rarely found in nature in a free form, they must be obtained by biosynthesis or protein hydrolysis, often resulting in aqueous mixtures containing various solutes including several types of amino acids. As a consequence, the cost of the separation processes and concentration of amino acids can be as high as 90 % of their total manufacturing cost. In this way, the design of such processes requires knowledge of the partitioning behavior in two-phase systems and thermodynamic models should support this optimization procedure. However, both the complexity of biomolecules, due to their multiple functional groups, and the crucial role of water make the standard available thermodynamic models unattractive for the computation of phase behavior. Therefore, new thermodynamic models for the description of the phase behavior of systems containing biomolecules are required. In this work, liquid–liquid equilibrium data of the ternary systems 1-butanol + water + amino acid (glycine, dl-alanine or l-leucine) were measured at 313.15 K. The experimental results were correlated and interaction parameters were estimated for the modified-NRTL, UNIFAC and UNIFAC-Campinas models. The modified-NRTL model was able to describe the data better than the UNIFAC and UNIFAC-Campinas models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Cascaval, D., Oniscu, C., Galaction, A.-I.: Selective separation of amino acids by reactive extraction. Biochem. Eng. J. 7, 171–176 (2001)

    Article  CAS  Google Scholar 

  2. Eyal, A.M., Bressler, E.: Industrial separation of carboxylic and amino acids by liquid membranes: applicability. Process considerations and potential advantage. Biotechnol. Bioeng. 41, 287–295 (1993)

    Article  CAS  Google Scholar 

  3. Rudolph, E.S.J., Zomerdijk, M., Ottens, M., van der Wielen, L.A.M.: Solubilities and partition coefficients of semi-synthetic antibiotics in water + 1-butanol systems. Ind. Eng. Chem. Res. 40, 398–406 (2001)

    Article  CAS  Google Scholar 

  4. Salabat, A., Sadeghi, R., Moghadam, S.T., Jamehbozorg, B.: Partitioning of l-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts. J. Chem. Thermodyn. 43, 1525–1529 (2011)

    Article  CAS  Google Scholar 

  5. Salabat, A., Far, M.R., Moghadam, S.T.: Partitioning of amino acids in surfactant based aqueous two-phase systems containing the nonionic surfactant (Triton X-100) and salts. J. Solution Chem. 40, 61–66 (2011)

    Article  CAS  Google Scholar 

  6. Pei, Y., Li, Z., Liu, L., Wang, J.: Partitioning behavior of amino acids in aqueous two-phase systems formed by imidazolium ionic liquid and dipotassium hydrogen phosphate. J. Chromatogr. A 1231, 2–7 (2012)

    Article  CAS  Google Scholar 

  7. Liu, Y., Wu, Z., Zhang, Y., Yuan, H.: Partitioning of biomolecules in aqueous two phase systems of polyethylene glycol and nonionic surfactant. Biochem. Eng. J. 69, 93–99 (2012)

    Article  CAS  Google Scholar 

  8. Silvério, S.C., Ferreira, L.A., Martins, J.A., Marcos, J.C., Macedo, E.A., Teixeira, J.A.: Lysozime and bovine serum albumin partitioning in polyethylene glycol–phenylalanine conjugate polymer/salt aqueous two-phase systems. Fluid Phase Equilib. 322(333), 19–25 (2012)

    Article  Google Scholar 

  9. Maia, F.M., Rodríguez, O., Macedo, E.A.: Relative hydrophobicity of equilibrium phases in biphasic systems (ionic liquid + water). J. Chem. Thermodyn. 48, 221–228 (2012)

    Article  CAS  Google Scholar 

  10. Madeira, P.P., Bessa, A., Álvares-Ribeiro, L., Aires-Barros, M.R., Rodrigues, A.E., Zaslavsky, B.Y.: Analysis of amino acid–water interactions by partitioning in aqueous two-phase systems. 1-Amino acids with non-polar side-chains. J. Chromatogr. A 1274, 82–86 (2013)

    Article  CAS  Google Scholar 

  11. Barros, D.P.C., Campos, S.R.R., Madeira, P.P., Azevedo, A.M., Baptista, A.M., Aires-Barros, M.R.: Modeling the partitioning of amino acids in aqueous two-phase systems. J. Chromatogr. A 1329, 52–60 (2014)

    Article  Google Scholar 

  12. Gude, M.T., van der Wielen, L.A.M., Luyben, K.Ch.A.M.: Phase behavior of α-amino acids in multicomponent aqueous alkanol solutions. Fluid Phase Equilib. 116, 110–117 (1996)

    Article  CAS  Google Scholar 

  13. Van Berlo, M., Gude, M.T., van der Wielen, L.A.M., Luyben, K.Ch.A.M.: Partition coefficients and solubilities of glycine in the ternary solvent system 1-butanol + ethanol + water. Ind. Eng. Chem. Res. 36, 2474–2482 (1997)

    Article  Google Scholar 

  14. Korenman, Y., Mokshina, Y., Pakhomova, O.A.: Liquid–liquid distribution of aromatic α-amino acids in multicomponent systems. Russ. J. Phys. Chem. 84, 221–224 (2010)

    Article  CAS  Google Scholar 

  15. Ulanova, T., Tuma, D., Maurer, G.: Phase equilibria and partitioning of l-histidine and three pharmaceuticals to pH-adjusted high-pressure liquid phases of the ternary system (ethane + water + 2-propanol). J. Chem. Eng. Data 56, 4376–4391 (2011)

    Article  CAS  Google Scholar 

  16. Ferreira, L.A., Pinho, S.P., Macedo, E.A.: Solubility of l-serine, l-threonine and l-isoleucine in aqueous aliphatic alcohol solutions. Fluid Phase Equilib. 270, 1–9 (2008)

    Article  CAS  Google Scholar 

  17. Vetere, A.: A simple modification of the NRTL equation. Fluid Phase Equilib. 173, 57–64 (2000)

    Article  CAS  Google Scholar 

  18. Fredenslund, A., Jones, R.L., Prausnitz, J.M.: Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21, 1086–1099 (1975)

    Article  CAS  Google Scholar 

  19. Fredenslund, A., Gmehling, J., Rasmussen, P.: Vapor-Liquid Equilibria Using UNIFAC. Elsevier, Amsterdam (1977)

    Google Scholar 

  20. Magnussen, T., Rasmussen, P., Fredenslund, A.: UNIFAC parameter table for prediction of liquid–liquid equilibriums. Ind. Eng. Chem. Process Des. Dev. 20, 331–339 (1981)

    Article  CAS  Google Scholar 

  21. Santos, G.R.: UNIFAC-Campinas: A New UNIFAC model for prediction of liquid–liquid equilibrium. D.Sc. thesis (in Portuguese), School of Chemical Engineering, University of Campinas, Campinas (2005)

  22. Gude, M.T., Meuwissen, H.H.J., van der Wielen, L.A.M., Luyben, K.Ch.A.M.: Partition coefficients and solubilities of α-amino acids in aqueous 1-butanol solutions. Ind. Eng. Chem. Res. 35, 4700–4712 (1996)

    Article  CAS  Google Scholar 

  23. Prausnit, J.M., Lichtentaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  24. Perry, R.H., Green, D.W., Maloney, J.O.: Perry’s Chemical Engineers’ Handbook, 7th edn. McGraw-Hill, New York (1997)

    Google Scholar 

  25. Cibulka, I., Hnědkovskýa, L., Šedlbauerb, J.: Partial molar volumes of organic solutes in water. XX. Glycine(aq) and l-alanine(aq) at temperatures (298 to 443) K and at pressures up to 30 MPa. J. Chem. Thermodyn. 42, 198–207 (2010)

    Article  CAS  Google Scholar 

  26. Rajagopal, K., Gladson, S.E.: Partial molar volume and partial molar compressibility of four homologous α-amino acids in aqueous sodium fluoride solutions at different temperatures. J. Chem. Thermodyn. 43, 852–867 (2011)

    Article  CAS  Google Scholar 

  27. Bondi, A.: Physical Properties of Molecular Crystals, Liquids and Glasses. Wiley, New York (1968)

    Google Scholar 

  28. Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)

    Article  CAS  Google Scholar 

  29. Wu, H.S., Sandler, S.I.: Use of ab initio quantum mechanics calculations in group contribution methods. 1. Theory and the basis for group identifications. Ind. Eng. Chem. Res. 30, 881–889 (1991)

    Article  CAS  Google Scholar 

  30. Miertuš, S., Scirocco, E., Tomasi, J.: Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55, 117–129 (1981)

    Article  Google Scholar 

  31. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  Google Scholar 

  32. García-Sánchez, F., Schwartzentruber, J., Ammar, M.N., Renon, H.: Modeling of multiphase liquid equilibria for multicomponent mixtures. Fluid Phase Equilib. 121, 207–225 (1996)

    Article  Google Scholar 

  33. Ruiz, F., Prats, D., Gomis, V.: Quaternary liquid–liquid equilibrium. Water–ethanol-1-butanolchloroform at 25 °C. Experimental determination and graphical representation of equilibrium data. J. Chem. Eng. Data 29, 147–151 (1984)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. E. A. Macedo (University of Porto, Portugal) and Dr. S. P. Pinho (currently at Salvador University, Brazil) for their experimental support and useful theoretical discussions. Dr. G. R. Santos acknowledges the financial support from Program Alβan—European Union Program of High Level Scholarships for Latin America, process E03D09468BR. Dr. M. Aznar is the recipient of a CNPq research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Aznar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santos, G.R., Souza, D.C. & Aznar, M. Liquid–Liquid Equilibria of Water + 1-Butanol + Amino Acid (Glycine or dl-Alanine or l-Leucine) at 313.15 K. J Solution Chem 43, 2101–2116 (2014). https://doi.org/10.1007/s10953-014-0265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0265-1

Keywords

  • Liquid–liquid equilibrium
  • Amino acid
  • Alcohol
  • Partition coefficient
  • Modeling