Skip to main content
Log in

A Thermodynamic Method to Study the Interaction Between NaOH and Highly Carboxylated Polymeric Particles in Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

One of the most important challenges facing nanotechnology is to identify methods that relate the synthesis of nanomaterials with their final applications. This work proposes a thermodynamic method to understand the stimuli–response of functionalized polymeric particles with NaOH using the partial volumes of interaction, partial compressibilities of interaction, partial enthalpies of interaction and the average hydrodynamic diameter. These properties have been calculated from experimental measurements made by mechanical oscillation densimetry, the sound speed technique, isothermal titration calorimetry, dynamic light scattering and zeta potential. The thermodynamic method allows determination of how and where the interactions take place on the polymeric particles. From the methodological point of view, the thermodynamic fundamentals of the method were tested by simulating the partial properties calculated from volumetric data of a ternary liquid mixture taken from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Klotz, I.M., Rosenberg, R.M.: Chemical Thermodynamics: Basic Theory and Methods, revised edn. W. A. Benjamin, New York (1964)

    Google Scholar 

  2. Klotz, I.M., Rosenberg, R.M.: Chemical Thermodynamics: Basic Theory and Methods, 7th edn. Wiley, New York (2008)

    Book  Google Scholar 

  3. Jeong, B., Gutowska, A.: Lessons from nature: stimuli–responsive polymers and their biomedical applications. Biotechnology 20, 305–311 (2002)

    CAS  Google Scholar 

  4. Medeiros, S.F., Santos, A.M., Fessi, H., Elaissari, A.: Stimuli–responsive magnetic particles for biomedical applications. Int. J. Pharm. 403, 139–161 (2011)

    Article  CAS  Google Scholar 

  5. 2020 Horizon. http://www.2020-horizon.com/Pilot-lines-for-precision-synthesis-of-nanomaterials-i299.html. Accessed 14 Feb 2014

  6. Grolier, J.-P.E., del Río, J.M.: Isothermal titration calorimetry: application of the Gibbs–Duhem equation to the study of the relation between forward and reverse titrations. J. Solution Chem., submitted for publication

  7. Filfil, R., Chalikian, T.V.: Volumetric and spectroscopic characterizations of the native and acid-induced denaturated states of Staphylococcal nuclease. J. Mol. Biol. 299, 827–842 (2000)

    Article  CAS  Google Scholar 

  8. Grolier, J.-P.E., del Río, J.M.: On the physical meaning of the isothermal titration calorimetry measurements in calorimeters with full cells. Int. J. Mol. Sci. 10, 5296–5325 (2009)

    Article  CAS  Google Scholar 

  9. Mays, H., Mortensen, K., Brown, W.: Microemulsions studied by scattering techniques in scattering in polymeric and colloidal systems, Chap. 6, pp. 249–325. Gordon and Breach Science Publishers, The Netherlands (2000)

    Google Scholar 

  10. Hiemenz, P.C., Rajagopalan, R.: Principles of Colloid and Surface Chemistry. Marcel Dekker, New York (1997)

    Google Scholar 

  11. Manzanilla-Granados, H.M., Jiménez-Ángeles, F., Lozada-Cassou, M.: The zeta potential for a concentrated colloidal dispersion: the colloidal primitive model vs. the cell model. Colloids Surf. A 376, 59–66 (2011)

    Article  CAS  Google Scholar 

  12. Manzanilla-Granados, H.M., Jiménez-Ángeles, F., Lozada-Cassou, M.: Polarity inversion of zeta-potential in concentrated colloidal dispersions. J. Phys. Chem. B 115, 12094–12097 (2011)

    Article  CAS  Google Scholar 

  13. Vela, M.P., Artal, M., Embid, J.M., Bravo, R., Otín, S.: Excess volumes of ternary mixtures 2,2,4-trimethylpentane+diisopropyl ether or methyl tert-butyl ether+methanol, ethanol, or 1-propanol at 298.15 K. J. Chem. Eng. Data 57, 1139–1145 (2012)

    Article  CAS  Google Scholar 

  14. Kauzmann, W.: Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63 (1959)

    CAS  Google Scholar 

  15. Shiio, H., Ogawa, T., Yoshihashi, H.: Measurement of the amount of bound water by ultrasonic interferometer. J. Am. Chem. Soc. 77, 4980–4982 (1954)

    Article  Google Scholar 

  16. Shiio, H.: Ultrasonic interferometer measurements of the amount of bound water saccharides. J. Am. Chem. Soc. 80, 70–73 (1958)

    Article  CAS  Google Scholar 

  17. Gekko, K., Noguchi, H.: Compressibility of globular proteins in water at 25 °C. J. Phys. Chem. 83, 2706–2714 (1979)

    Article  CAS  Google Scholar 

  18. Gekko, K., Hasegawa, Y.: Compressibility–structure relationship of globular proteins. Biochemistry 25, 6563–6571 (1986)

    Article  CAS  Google Scholar 

  19. Chalikian, T.V., Sarvazyan, A.P., Breslauer, K.J.: Partial molar volumes, expansibilities, and compressibilities of alpha, omega-amino carboxylic acids in aqueous solutions between 18 and 55 °C. J. Phys. Chem. 97, 13017–13026 (1993)

    Article  CAS  Google Scholar 

  20. Chalikian, T.V., Plum, G.E., Sarvazyan, A.P., Breslauer, K.J.: Influence of drug binding on DNA hydration: acoustic and densimetric characterizations of netropsin binding to the poly(dAdT)·poly(dAdT) and poly(dA)·Poly(dT) duplexes and the poly(dT)·poly(dA)·poly(dT) triplex at 25 °C. Biochemistry 33, 8629–8640 (1994)

    Article  CAS  Google Scholar 

  21. Santillán, R., Nieves, E., Alejandre, P., Pérez, E., del Río, J.M., Corea, M.: Comparative thermodynamic study of functional polymeric latex particles with different morphologies. Colloids Surf. A 444, 189–208 (2014)

    Article  Google Scholar 

  22. Paci, E., Velikson, B.: On the volume of macromolecules. Biopolymers 41, 785–797 (1997)

    Article  CAS  Google Scholar 

  23. Chalikian, T.V., Totrov, M., Abagyan, R., Breslauer, K.J.: The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data. J. Mol. Biol. 260, 588–603 (1996)

    Article  CAS  Google Scholar 

  24. Durchschlag, H., Zipper, P.: Calculation of the partial volume of organic compounds and polymers. Prog. Colloid Polym. Sci. 94, 20–39 (1994)

    CAS  Google Scholar 

  25. Kharakoz, D., Bychkova, V.E.: Molten globule of human-lactalbumin: hydration, density, and compressibility of the interior. Biochemistry 36, 1882–1890 (1997)

    Article  CAS  Google Scholar 

  26. Svergun, D.L., Richard, S., Koch, M.H.J., Sayers, A., Kuprin, S., Zaccai, G.: Protein hydration in solution: experimental observation by X-ray and neutron scattering. Proc. Natl. Acad. Sci. USA 95, 2267–2272 (1998)

    Article  CAS  Google Scholar 

  27. Chalikian, T.V., Breslauer, K.: Thermodynamic analysis of biomolecules: a volumetric approach. J. Curr. Opin. Struct. Biol. 8, 657–664 (1998)

    Article  CAS  Google Scholar 

  28. Lei, Y., Child, J.R., Tsavalas, J.G.: Design and analysis of the homogeneous and heterogeneous distribution of water within colloidal polymer particles. Colloid Polym. Sci. 291, 143–156 (2013)

    Article  CAS  Google Scholar 

  29. Higuchi, A., Iijima, T.: DSC investigation of the states of water in poly(vinylalcohol) membranes. Polymer 26, 1207–1211 (1985)

    Article  CAS  Google Scholar 

  30. Lovell, P.A., El-Aasser, M.S.: Emulsion Polymerization and Emulsion Polymers, Chap. 2. Wiley, New York (1997)

    Google Scholar 

  31. Kuehner, D.E., Heyer, C., Rämsch, C., Fornefeld, U.M., Blanch, H.W., Prausnitz, J.M.: Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements. Biophys. J. 73, 3211–3224 (1997)

    Article  CAS  Google Scholar 

  32. Haynes, W.M.: Handbook of Chemistry and Physics, Sect. 5, 95th edn. CRC Press, Taylor & Francis Group, London (2014–2015)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the financial support to project 1062326, and Jose Antonio Becerra for his help to obtain the standard free energy data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Corea.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Río, J.M., Santillan, R., Vallejo, I. et al. A Thermodynamic Method to Study the Interaction Between NaOH and Highly Carboxylated Polymeric Particles in Solution. J Solution Chem 44, 963–986 (2015). https://doi.org/10.1007/s10953-014-0236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0236-6

Keywords

Navigation