Skip to main content

Advertisement

Log in

Pressure-Induced Solidification of 1-Butyl-3-methylimidazolium Tetrafluoroborate

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

We have used Raman spectroscopy to investigate the high-pressure phase behavior of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), a representative ionic liquid, at pressures up to ~7.5 GPa. We have also studied how increasing pressure leads to conformational changes in the [bmim]+ cation. We have found that liquid [bmim][BF4] undergoes pressure-induced solidification (freezing) into a superpressed (metastable) state at 2.5 GPa; another structural change probably occurs at ~6 GPa. Remarkably, conformational changes in the [bmim]+ cation between trans and gauche conformers are concordant with the metastable structural changes of [bmim][BF4]. As the pressure is increased from ambient, the fraction of gauche conformers increases, but the gauche fraction decreases above the solidification pressure (2.5 GPa), and slope of the gauche/trans ratio changes again above 6 GPa. We interpret these results in terms of the fragility of the ionic liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wilkes, J.S.: Properties of ionic liquid solvents for catalysis. J. Mol. Cat. 214, 11–17 (2004)

    Article  CAS  Google Scholar 

  2. Hamaguchi, H., Ozawa, R.: Structure of ionic liquids and ionic compounds: are ionic liquids genuine liquids in the conventional sense? Adv. Chem. Phys. 131, 85–104 (2005)

    CAS  Google Scholar 

  3. Ye, C., Liu, W., Chen, Y., Yu, L.: Room-temperature ionic liquids: a novel versatile lubricant. Chem. Commun. 2244–2245 (2001)

  4. Welton, T.: Room temperature ionic liquids. Solvent for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  Google Scholar 

  5. Canogia Ropez, J.N., Padua, A.A.H.: Nanostructural organization in ionic liquids. J. Phys. Chem. B 110, 3330–3335 (2006)

    Article  Google Scholar 

  6. Macchiagodena, M., Gontrani, L., Ramondo, F., Triolo, A., Caminiti, R.: Liquid structure of 1-alkyl-3-methylimidazolium-hexafluorophosphates by wide angle X-ray and neutron scattering and molucular dynamics. J. Chem. Phys. 134, 114521 (2011)

    Article  Google Scholar 

  7. Jiang, W., Wang, Y., Voth, G.A.: Molecular dynamics simulation of nanostructural organization in ionic liquid/water mixtures. J. Phys. Chem. B 111, 4812–4818 (2007)

    Article  CAS  Google Scholar 

  8. Iwata, K., Okajima, H., Saha, S., Hamaguchi, H.-O.: Local structure formation in alkyl-imidazolium-based ionic liquids as revealed by linear and nonlinear raman spectroscopy. Acc. Chem. Res. 40, 1174–1181 (2007)

    Article  CAS  Google Scholar 

  9. de Faria, L.F.O., Nobrega, M.M., Temperini, M.L.A., Ribeiro, M.C.C.: Ionic liquids based on the bis(trifluoromethylsulfonyl)imide anion for high pressure Raman spectroscopy measurements. J. Raman Spectrosc. 44, 481–484 (2013)

    Article  CAS  Google Scholar 

  10. Su, L., Li, L., Hu, Y., Yuan, C., Shao, C., Hong, S.: Phase transition of [Cn-mim][PF6] under high pressure up to 1.0 GPa. J. Chem. Phys. 130, 84503 (2009)

    Article  Google Scholar 

  11. Yoshimura, Y., Takekiyo, T., Imai, Y., Abe, H.: Pressure-induced spectral changes of room-temperature ionic liquid, N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis(trifluoromethylsulfonyl)imide, [DEME][TFSI]. J. Phys. Chem. C 116, 2097–2101 (2012)

    Article  CAS  Google Scholar 

  12. Yoshimura, Y., Abe, H., Takekiyo, T., Shigemi, M., Hamaya, N., Wada, R., Kato, M.: Superpressing of a room temperature ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate. J. Phys. Chem. B 117, 12296–12302 (2013)

    Article  CAS  Google Scholar 

  13. Yoshimura, Y., Abe, H., Imai, Y., Takekiyo, T., Hamaya, N.: Decompression-induced crystal polymorphism in a room temperature ionic liquid, N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate. J. Phys. Chem. B 117, 3264–3269 (2013)

    Article  CAS  Google Scholar 

  14. Ozawa, R., Hayashi, S., Saha, S., Kobayashi, A., Hamaguchi, H.: Rotational isomerism and structure of the 1-butyl-3-methylimidazolium cation in the ionic liquid state. Chem. Lett. 32, 948–949 (2003)

    Article  CAS  Google Scholar 

  15. Endo, T., Kato, T., Tozaki, K., Nishikawa, K.: Phase behaviors of room temperature ionic liquid linked with cation conformational changes: 1-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B 114, 407–411 (2010)

    Article  CAS  Google Scholar 

  16. Russina, O., Fazio, B., Schmidt, C., Trioro, A.: Structural organization and phase behavior of 1-butyl-3-methylimidazolium hexafluorophosphate: a high pressure Raman spectroscopy study. Phys. Chem. Chem. Phys. 13, 12067–12074 (2011)

    Article  CAS  Google Scholar 

  17. Saouane, S., Norman, S.E., Hardacre, C., Fabbiani, F.P.A.: Pinning down the solid-state polymorphism of the ionic liquid [bmim][PF6]. Chem. Sci. 4, 1270–1280 (2013)

    Article  CAS  Google Scholar 

  18. Takekiyo, T., Hatano, N., Imai, Y., Abe, H., Yoshimura, Y.: Pressure-induced phase transition of 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6]. High Press. Res. 31, 35–38 (2011)

    Article  CAS  Google Scholar 

  19. Imai, Y., Takekiyo, T., Abe, H., Yoshimura, Y.: Pressure- and temperature-induced Raman spectral changes of 1-butyl-3-methylimidazolium tetrafluoroborate. High Press. Res. 31, 53–57 (2011)

    Article  CAS  Google Scholar 

  20. Holbrey, J.D., Seddon, K.R.: The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J. Chem. Soc. Dalton Trans. 13, 2133–2139 (1999)

    Article  Google Scholar 

  21. Mao, H.K., Bell, P.M.: Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276–3283 (1978)

    Article  CAS  Google Scholar 

  22. Snyder, R.G., Hsu, S.L., Krimm, S.: Vibrational spectra in the C-H stretching region and the structure of the polymethylene chain. Spectrochim. Acta 34A, 395–406 (1978)

    Article  CAS  Google Scholar 

  23. Kavitha, G., Narayana, C.: Raman spectroscopic investigations on pressure-induced phase transitions in n-hexane. J. Phys. Chem. B 111, 14130–14135 (2007)

    Article  CAS  Google Scholar 

  24. Heimer, N.E., Sesto, R.E.D., Meng, Z., Wilkes, S., Carper, W.R.: Vibrational spectra of imidazolium tetrafluoroborate ionic liquids. J. Mol. Liquids 124, 84–95 (2006)

    Article  CAS  Google Scholar 

  25. Piermarini, G.J., Block, S., Barnett, J.D.: Hydrostatic limits in liquids and solids to 100 kbar. J. Appl. Phys. 44, 5377–5382 (1973)

    Article  CAS  Google Scholar 

  26. Klotz, S., Takemura, K., Strässle, T., Hansen, T.: Freezing of glycerol–water mixtures under pressure. High Press. Res. J. Phys. Condens. Matter 24, 325103 (2012)

    Article  CAS  Google Scholar 

  27. Pham, K.N., Puertas, A.M., Bergenholtz, J., Egelhaaf, S.U., Moussaïd, A., Pusey, P.N., Schofield, A.B., Cates, M.E., Fuchs, M., Poon, W.C.K.: Multiple glassy states in a simple model system. Science 296, 104–106 (2002)

    Article  CAS  Google Scholar 

  28. Misihima, O., Stanley, H.E.: The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998)

    Article  Google Scholar 

  29. Yoshimura, Y., Kimura, H., Okamoto, C., Miyashita, T., Imai, Y., Abe, H.: Glass tansition behaviour of ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate–H2O mixed solutions. J. Chem. Thermodyn. 43, 410–412 (2011)

    Article  CAS  Google Scholar 

  30. Angell, C.A.: Relaxation in liquids, polymers and plastic crystals − Strong/fragile patterns and problems. J. Non-Crys. Solids 131–133, 13–31 (1991)

    Article  Google Scholar 

  31. Böhmer, R., Ngai, K.L., Angell, C.A., Plazek, D.J.: Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993)

    Article  Google Scholar 

  32. Xu, W., Cooper, E.I., Angell, C.A.: Ionic liquids: ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 107, 6170–6178 (2003)

    Article  CAS  Google Scholar 

  33. Paluch, M., Hensei-Bielówka, S., Ziolo, J.: Effect of pressure on fragility and glass transition temperature in fragile glass-former. J. Chem. Phys. 110, 10978–10981 (1999)

    Article  CAS  Google Scholar 

  34. Su, L., Zhu, X., Wang, Z., Cheng, X., Wang, Y., Yuan, C., Chen, Z., Ma, C., Li, F., Zhou, Q., Cui, Q.: In situ observation of multiple phase transitions in low-melting ionic liquid [BMIM][BF4] under high pressure up to 30 GPa. J. Phys. Chem. B 116, 2216–2222 (2012)

    Article  CAS  Google Scholar 

  35. Chen, Y., Ke, F., Wang, H., Zhang, Y., Liang, D.: Phase separation in mixtures of ionic liquids and water. Chem. Phys. Chem. 13, 160–167 (2012)

    CAS  Google Scholar 

  36. Wu, B., Zhang, L., Zhang, Y.M., Wang, H.P.: Unstable supramolecular structure of [Bmim][BF4] in aqueous solution. Chem. Eur. J. (2009). doi:10.1002/chem.200901098

    Google Scholar 

  37. Jeon, Y., Sung, J., Seo, C., Lim, H., Cheong, H., Kang, M., Moon, B., Ouchi, Y., Kim, D.H.: Structures of ionic liquids with different anions studied by infrared vibration spectroscopy. J. Phys. Chem. B 112, 4735–4740 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Yoshimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shigemi, M., Takekiyo, T., Abe, H. et al. Pressure-Induced Solidification of 1-Butyl-3-methylimidazolium Tetrafluoroborate. J Solution Chem 43, 1614–1624 (2014). https://doi.org/10.1007/s10953-014-0233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0233-9

Keywords

Navigation