Skip to main content
Log in

Physical and CO2-Absorption Properties of Imidazolium Ionic Liquids with Tetracyanoborate and Bis(trifluoromethanesulfonyl)amide Anions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Ionic liquids with tetracyanoborate ([TCB]) and bis(trifluoromethanesulfonyl)amide ([Tf2N]) anions generally have low viscosities and high CO2 capacities, and thus they are attractive solvents for CO2-related applications. Herein, we have investigated physical and CO2-absorption properties of 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid ([emim][TCB]) to discuss the anion effects of [TCB] in comparison with the previous results of [emim][Tf2N]. The density, viscosity, electrical conductivity, and isobaric molar heat capacity were measured as a function of temperature at atmospheric pressure. [emim][TCB] has both lower density and isobaric molar heat capacity than [emim][Tf2N]. [emim][TCB] shows superior transport properties (lower viscosity and higher electrical conductivity) compared to [emim][Tf2N], whereas the Walden plots of molar conductivity against fluidity (reciprocal of viscosity) have smaller values in [emim][TCB] than in [emim][Tf2N] at certain fluidities. The high-pressure CO2 solubilities were also determined in [emim][TCB]. The mole fraction scaled solubility of CO2 in [emim][TCB] is slightly larger than that in [emim][Tf2N] at certain pressures and temperatures. The former ionic liquid shows much higher molarity scaled solubility of CO2 than the latter because of the smaller molar volume. It is suggested that both anions have similar strength of intermolecular interaction with CO2 and comparable changes in the solvent structure between neat and CO2 solution, in view of the thermodynamic parameters of dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A, B, T 0 :

Coefficients in VFT equation

A′, B′, C′ :

Coefficients in polynomial

C :

Constant in Walden product

D :

Angell strength parameter (=B/T 0)

Δsol H :

Enthalpy of dissolution (J·mol−1)

M :

Molar mass (kg·mol−1)

R :

Gas constant (J·mol−1·K−1)

Δsol S :

Entropy of dissolution (J·K−1·mol−1)

T :

Temperature (K)

V :

Volume (m3)

V cell :

Inner volume of the experimental apparatus (m3)

V m :

molar volume (m3)

V m :

Partial molar volume (m3·mol−1)

ΔV :

Volume expansion (-)

C :

molarity (mol·m−3)

f :

Fugacity (Pa)

k H :

Henry constant (Pa)

n :

molar amount (mol)

n i1 :

molar amount of component 1 (CO2) loaded (mol)

x :

mole fraction (-)

α :

Coefficient in the Walden product

β :

Thermal expansion coefficient (K−1)

η :

Viscosity (Pa·s)

κ :

Electrical conductivity (S·m−1)

ρ :

Density (kg·m−3)

exp:

Experimental value

cal:

Calculated value

1:

Component 1 (CO2)

2:

Component 2 (IL)

G:

Gas (CO2) phase

L:

Liquid (IL) phase

∞:

Infinite dilution

References

  1. Kanakubo, M., Harris, K.R., Tsuchihashi, N., Ibuki, K., Ueno, M.: Temperature and pressure dependence of the electrical conductivity of the ionic liquids 1-methyl-3-octylimidazolium hexafluoro-phosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. Fluid Phase Equilib. 261, 414–420 (2007)

    Article  CAS  Google Scholar 

  2. Kanakubo, M., Harris, K.R., Tsuchihashi, N., Ibuki, K., Ueno, M.: Effect of pressure on transport properties of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B 111, 2062–2069 (2007)

    Article  CAS  Google Scholar 

  3. Kanakubo, M., Nanjo, H., Nishida, T., Takano, J.: Density, viscosity, and electrical conductivity of N-methoxymethyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)amide. Fluid Phase Equilib. 302, 10–13 (2011)

    Article  CAS  Google Scholar 

  4. Makino, T., Kanakubo, M., Umecky, T., Suzuki, A., Nishida, T., Takano, J.: Electrical conductivities, viscosities, and densities of n-methoxymethyl- and n-butyl-n-methylpyrrolidinium ionic liquids with the bis(fluorosulfonyl)amide anion. J. Chem. Eng. Data 57, 751–755 (2012)

    Article  CAS  Google Scholar 

  5. Makino, T., Kanakubo, M., Umecky, T., Suzuki, A.: Electrical conductivities, viscosities, and densities of N-acetoxyethyl-N,N-dimethyl-N-ethylammonium and N,N-dimethyl-N-ethyl-N-methoxy-ethoxyethylammonium bis(trifluoromethanesulfonyl)amide and their nonfunctionalized analogues. J. Chem. Eng. Data 58, 370–376 (2013)

    Article  CAS  Google Scholar 

  6. Makino, T., Kanakubo, M., Umecky, T., Suzuki, A.: CO2 solubility and physical properties of N-(2-hydroxyethyl)pyridinium bis(trifluoromethanesulfonyl)amide. Fluid Phase Equilib. 357, 64–70 (2013)

    Article  CAS  Google Scholar 

  7. Umecky, T., Kanakubo, M., Makino, T., Aizawa, T., Suzuki, A.: Effect of CO2 dissolution on electrical conductivity and self-diffusion coefficients of 1-butyl-3-methylimidazolium hexafluoro-phosphate ionic liquid. Fluid Phase Equilib. 357, 76–79 (2013)

    Article  CAS  Google Scholar 

  8. Makino, T., Kanakubo, M., Umecky, T., Suzuki, A., Nishida, T., Takano, J.: Pressure–volume–temperature–composition relations for carbon dioxide + pyrrolidinium-based ionic liquid binary systems. Fluid Phase Equilib. 360, 253–259 (2013)

    Article  CAS  Google Scholar 

  9. Blanchard, L.A., Hancu, D., Beckman, E.J., Brennecke, J.F.: Nature green processing using ionic liquids and CO2. Nature 399, 28–29 (1999)

    Article  Google Scholar 

  10. Sun, J., Fujita, S., Arai, M.: Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J. Organomet. Chem. 690, 3490–3497 (2005)

    Article  CAS  Google Scholar 

  11. Keskin, S., Kayrak-Talay, D., Akman, U., Hortaçsu, Ö.: A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids 43, 150–180 (2007)

    Article  CAS  Google Scholar 

  12. Bara, J.E., Carlisle, T.K., Gabriel, C.J., Camper, D., Finotello, A., Gin, D.L., Noble, R.D.: Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind. Eng. Chem. Res. 48, 2739–2751 (2009)

    Article  CAS  Google Scholar 

  13. Zhang, J., Sun, J., Zhang, X., Zhao, Y., Zhang, S.: The recent development of CO2 fixation and conversion by ionic liquid. Greenh. Gas Sci. Technol. 1, 142–159 (2011)

    Article  CAS  Google Scholar 

  14. Jessop, P.G., Mercera, S.M., Heldebrant, D.J.: CO2-triggered switchable solvents, surfactants, and other materials. Energy Environ. Sci. 5, 7240–7253 (2012)

    Article  CAS  Google Scholar 

  15. Ramdin, M., de Loos, T.W., Vlugt, T.J.H.: State-of-the-art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res. 51, 8149–8177 (2012)

    Article  CAS  Google Scholar 

  16. Zhang, J., Han, B.: Supercritical or compressed CO2 as a stimulus for tuning surfactant aggregations. Acc. Chem. Res. 46, 425–433 (2013)

    Article  CAS  Google Scholar 

  17. Aki, S.N.V.K., Mellein, B.R., Saurer, E.M., Brennecke, J.F.: High-pressure behavior of carbon dioxide with imidazolium-based ionic liquids. J. Phys. Chem. B 108, 20355–20365 (2004)

    Article  CAS  Google Scholar 

  18. Muldoon, M.J., Aki, S.N.V.K., Anderson, J.L., Dixon, J.K., Brennecke, J.F.: Improving carbon dioxide solubility in ionic liquids. J. Phys. Chem. B 111, 9001–9009 (2007)

    Article  CAS  Google Scholar 

  19. Mahurin, S.M., Lee, J.S., Baker, G.A., Luo, H., Dai, S.: Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation. J. Membr. Sci. 353, 177–183 (2010)

    Article  CAS  Google Scholar 

  20. Tong, J., Liu, Q.-S., Kong, Y.-X., Fang, D.-W., Welz-Biermann, U., Yang, J.-Z.: Physicochemical properties of an ionic liquid [C2mim][B(CN)4]. J. Chem. Eng. Data 55, 3693–3696 (2010)

    Article  CAS  Google Scholar 

  21. Mahurin, S.M., Hillesheim, P.C., Yeary, J.S., Jiang, D., Dai, S.: High CO2 solubility, permeability and selectivity in ionic liquids with the tetracyanoborate anion. RSC Adv. 2, 11813–11819 (2012)

    Article  CAS  Google Scholar 

  22. Koller, T., Rausch, M.H., Schulz, P.S., Berger, M., Wasserscheid, P., Economou, I.G., Leipertz, A., Fröba, A.P.: Viscosity, interfacial tension, self-diffusion coefficient, density, and refractive index of the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate as a function of temperature at atmospheric pressure. J. Chem. Eng. Data 57, 828–835 (2012)

    Article  CAS  Google Scholar 

  23. Blahut, A., Dohnal, V., Vrbka, P.: Interactions of volatile organic compounds with the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate. J. Chem. Thermodyn. 47, 100–108 (2012)

    Article  CAS  Google Scholar 

  24. Seki, S., Serizawa, N., Hayamizu, K., Tsuzuki, S., Umebayashi, Y., Takei, K., Miyashiro, H.: Physicochemical and electrochemical properties of 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)- trifluorophosphate and 1-ethyl-3-methylimidazolium tetracyanoborate. J. Electrochem. Soc. 159, A967–A971 (2012)

    Article  CAS  Google Scholar 

  25. Mota-Martineza, M.T., Althulutha, M., Kroonc, M.C., Peters, C.J.: Solubility of carbon dioxide in the low-viscosity ionic liquid 1-hexyl-3-methylimidazolium tetracyanoborate. Fluid Phase Equilib. 332, 35–39 (2012)

    Article  Google Scholar 

  26. Koller, T., Rausch, M.H., Ramos, J., Schulz, P.S., Wasserscheid, P., Economou, I.G., Fröba, A.P.: Thermophysical properties of the ionic liquids [EMIM][B(CN)4] and [HMIM][B(CN)4]. J. Phys. Chem. B 117, 8512–8523 (2013)

    Article  CAS  Google Scholar 

  27. Harris, K.R., Woolf, L.A., Kanakubo, M.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J. Chem. Eng. Data 50, 1777–1782 (2005)

    Article  CAS  Google Scholar 

  28. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. J. Chem. Eng. Data 51, 1161–1167 (2008)

    Article  Google Scholar 

  29. Umecky, T., Kanakubo, M., Ikushima, Y.: Self-diffusion coefficients of 1-butyl-3-methylimidazolium hexafluorophosphate with pulsed-field gradient spin-echo NMR technique. Fluid Phase Equilib. 228–229, 329–333 (2005)

    Article  Google Scholar 

  30. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST Standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 9.0. National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2010)

  31. Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25, 1509–1596 (1996)

  32. Welz-Biermann, U., Ignatyev, N., Bernhardt, E., Finze, M., Willner, H.: Salts comprising cyanoborate anions. Merck Gmbh, Dermstadt, Germany. Patent WO 2004/072089 A1 2004

  33. Makino, T., Kanakubo, M., Masuda, Y., Umecky, T., Suzuki, A.: CO2 absorption properties, densities, viscosities, and electrical conductivities of ethylimidazolium and 1-ethyl-3-methylimidazolium ionic liquids. Fluid Phase Equilib. doi:10.1016/j.fluid.2013.10.031

  34. Babarao, R., Dai, S., Jiang, D.: Understanding the high solubility of CO2 in an ionic liquid with the tetracyanoborate anion. J. Phys. Chem. B 115, 9789–9794 (2011)

    Article  CAS  Google Scholar 

  35. Xu, W., Cooper, E.I., Angell, C.A.: Ionic liquids: ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 107, 6170–6178 (2003)

    Article  CAS  Google Scholar 

  36. Angell, C.A., Byrne, N., Belieres, J.-P.: Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. Acc. Chem. Res. 40, 1228–1236 (2007)

    Article  CAS  Google Scholar 

  37. Ueno, K., Tokuda, H., Watanabe, M.: Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys. Chem. Chem. Phys. 12, 1649–1658 (2010)

    Article  CAS  Google Scholar 

  38. Wu, T.-Y., Su, S.-G., Lin, Y.-.C., Wang, H.P., Lin, M.-W., Gung, S.-T., Sun, I.-W.: Electrochemical and physicochemical properties of cyclic amine-based Brønsted acidic ionic liquids. Electrochim. Acta 56, 853–862 (2010)

    Article  CAS  Google Scholar 

  39. Troncoso, J., Cerdeirintnã, C.A., Sanmamed, Y.A., Romaní, L., Lebelo, L.P.N.: Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2]. J. Chem. Eng. Data 51, 1856–1859 (2006)

    Article  CAS  Google Scholar 

  40. Shimizu, Y., Ohte, Y., Yamamura, Y., Saito, K.: Effects of thermal history on thermal anomaly in solid of ionic liquid compound, [C4mim][Tf2N]. Chem. Lett. 36, 1484–1489 (2007)

    Article  CAS  Google Scholar 

  41. Shimizu, Y., Ohte, Y., Yamamura, Y., Tsuzuki, S., Saito, K.: Comparative study of imidazolium- and pyrrolidinium-based ionic liquids: thermodynamic properties. J. Phys. Chem. B 116, 5406–5413 (2012)

    Article  CAS  Google Scholar 

  42. de Castro, C.A.N., Langa, E., Morais, A.L., Lopes, M.L.M., Lourenço, M.L.M., Santos, F.J.V., Santos, M.S.C.S., Lopes, J.N.C., Veiga, H.I.M., Macatrão, M., Esperança, J.M.S.S., Marques, C.S., Rebelo, L.P.N., Afonso, C.A.M.: Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2], [C4mim][dca], [C2mim][EtOSO3] and [Aliquat][dca]. Fluid Phase Equil. 294, 157–179 (2010)

    Article  Google Scholar 

  43. Paulechka, Y.U., Blokhin, A.V., Kabo, G.J., Strechan, A.A.: Thermodynamic properties and polymorphism of 1-alkyl-3-methylimidazolium bis(triflamides). J. Chem. Therm. 39, 866–877 (2007)

    Article  CAS  Google Scholar 

  44. Anthony, J.L., Anderson, J.L., Maginn, E.J., Brennecke, J.F.: Anion effects on gas solubility in ionic liquids. J. Phys. Chem. B 109, 6366–6374 (2005)

    Article  CAS  Google Scholar 

  45. Raeissi, S., Peters, C.J.: Carbon dioxide solubility in the homologous 1-alkyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide family. J. Chem. Eng. Data 54, 382–386 (2009)

    Article  CAS  Google Scholar 

  46. Hildebrand, J.H., Prausnitz, J.M., Scott, R.L.: Regular and related solutions. Reinhold, New York (1970)

  47. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data 52, 1080–1085 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors (TM and MK) would thank Ms. Eriko Niitsuma, Mr. Atsuhiro Oguni, and Ms. Kaori Takeshita for their assistance with the measurements in the present study. This study was supported by the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takashi Makino or Mitsuhiro Kanakubo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makino, T., Kanakubo, M., Masuda, Y. et al. Physical and CO2-Absorption Properties of Imidazolium Ionic Liquids with Tetracyanoborate and Bis(trifluoromethanesulfonyl)amide Anions. J Solution Chem 43, 1601–1613 (2014). https://doi.org/10.1007/s10953-014-0232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0232-x

Keywords

Navigation