Skip to main content
Log in

Influence of Water Content on Basicities in Acetonitrile

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The influence of water content at impurity level (5–10,000 ppm) in acetonitrile, on the changes in relative basicity differences (ΔpK a values) of 13 pairs of bases, was studied both experimentally and computationally (COSMO-RS). The ΔpK a values involving smaller bases with localized charge in the cationic form were found to be more affected. A computational parameter, weighted average negative sigma (WANS), was proposed to quantify the charge delocalization in cations and succeeded in describing the observed changes of ΔpK a. The results validate the previously published basicity scale in acetonitrile with respect to solvent dryness and give guidelines for better experimental planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Reichardt, C., Welton, T.: Solvents and Solvent Effects in Organic Chemistry, 3rd edn. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  2. Katritzky, A.R., Tamm, T., Wang, Y., Karelson, M.: A unified treatment of solvent properties. J. Chem. Inf. Comput. Sci. 39, 692–698 (1999)

    Article  CAS  Google Scholar 

  3. Kaupmees, K., Kaljurand, I., Leito, I.: Influence of water content on the acidities in acetonitrile. Quantifying charge delocalization in anions. J. Phys. Chem. A 114, 11788–11793 (2010)

    Article  CAS  Google Scholar 

  4. Espinosa, S., Bosch, E., Rosés, M.: Acid–base constants of neutral bases in acetonitrile–water mixtures. Anal. Chim. Acta 454, 157–166 (2002)

    Article  CAS  Google Scholar 

  5. Buckenmaier, S.M.C., McCalley, D.V., Euerby, M.R.: Determination of pK(a) values of organic bases in aqueous acetonitrile solutions using capillary electrophoresis. J. Chromatogr. A 1004, 71–79 (2003)

    Article  CAS  Google Scholar 

  6. Ahmed, I.T., Soliman, E.S., Boraei, A.A.A.: The acidity constants of some pyrimidine bases in various water–organic solvent media. Ann. Chim.-Rome 94, 847–856 (2004)

    Article  CAS  Google Scholar 

  7. Kaljurand, I., Rodima, T., Leito, I., Koppel, I., Schwesinger, R.: Self-consistent spectrophotometric basicity scale in acetonitrile covering the range between pyridine and DBU. J. Org. Chem. 65, 6202–6208 (2000)

    Article  CAS  Google Scholar 

  8. Kaljurand, I., Kütt, A., Sooväli, L., Rodima, T., Mäemets, V., Leito, I., Koppel, I.A.: Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pK(a) units: unification of different basicity scales. J. Org. Chem. 70, 1019–1028 (2005)

    Article  CAS  Google Scholar 

  9. Kaljurand, I., Koppel, I.A., Kütt, A., Rõõm, E.-I., Rodima, T., Koppel, I., Mishima, M., Leito, I.: Experimental gas-phase basicity scale of superbasic phosphazenes. J. Phys. Chem. A 111, 1245–1250 (2007)

    Article  CAS  Google Scholar 

  10. Rõõm, E.-I., Kütt, A., Kaljurand, I., Koppel, I., Leito, I., Koppel, I.A., Mishima, M., Goto, K., Miyahara, Y.: Brönsted basicities of diamines in the gas phase, acetonitrile, and tetrahydrofuran. Chem. Eur. J. 13, 7631–7643 (2007)

    Article  Google Scholar 

  11. Eckert-Maksić, M., Glasovac, Z., Trošelj, P., Kütt, A., Rodima, T., Koppel, I., Koppel, I.A.: Basicity of guanidines with heteroalkyl side chains in acetonitrile. Eur. J. Org. Chem. 30, 5176–5184 (2008)

    Article  Google Scholar 

  12. Kunetskiy, R.A., Polyakova, S.M., Vavrik, J., Cisarova, I., Saame, J., Nerut, E.R., Koppel, I., Koppel, I.A., Kütt, A., Leito, I., Lyapkalo, I.M.: A new class of organosuperbases, N-alkyl-and N-aryl-1,3-dialkyl-,4,5-dimethylimidazol-2-ylidene amines: synthesis, structure, pK BH+ measurements and properties. Chem. Eur. J. 18, 3621–3630 (2012)

    Article  CAS  Google Scholar 

  13. Štrukil, V., Ðilović, I., Matković-Čalogović, D., Saame, J., Leito, I., Šket, P., Plavec, J., Eckert-Maksić, M.: Molecular structure and acid/base properties of 1,2-dihydro-1,3,5-triazine derivatives. New J. Chem. 36, 86–96 (2012)

    Article  Google Scholar 

  14. Kaljurand, I., Lilleorg, R., Murumaa, A., Mishima, M., Burk, P., Koppel, I., Koppel, I.A., Leito, I.: The basicity of substituted N, N-dimethylanilines in solution and in the gas phase. J. Phys. Org. Chem. 26, 171–181 (2013)

    Article  CAS  Google Scholar 

  15. Haav, K., Saame, J., Kütt, A., Leito, I.: Basicity of phosphanes and diphosphanes in acetonitrile. Eur. J. Org. Chem. 11, 2167–2172 (2012)

    Article  Google Scholar 

  16. Marcus, Y., Kamlet, M.J., Taft, R.W.: Linear solvation energy relationships—Standard molar Gibbs free energies and enthalpies of tranfer of ions from water into nonaqueous solvents. J. Phys. Chem. 92, 3613–3622 (1988)

    Article  CAS  Google Scholar 

  17. Marenich, A.V., Kelly, C.P., Thompson, J.D., Hawkins, G.D., Chambers, C.C., Giesen, D.J., Winget, P., Cramer, C.J., Truhlar, D.G.: Minnesota Solvation Database—version 2012. University of Minnesota, Minneapolis (2012)

    Google Scholar 

  18. Klamt, A.: COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. Elsevier Science Ltd., Amsterdam (2005)

    Google Scholar 

  19. MacDonald, S.M., Opallo, M., Klamt, A., Eckert, F., Marken, F.: Probing carboxylate Gibbs transfer energies via liquid vertical bar liquid transfer at triple phase boundary electrodes: ion-transfer voltammetry versus COSMO-RS predictions. Phys. Chem. Chem. Phys. 10, 3925–3933 (2008)

    Article  CAS  Google Scholar 

  20. Klamt, A., Schüürmann, G.: COSMO—A new approach to dielectric screening insolvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkins Trans. 2(5), 799–805 (1993)

    Article  Google Scholar 

  21. Kruve, A., Kaupmees, K., Liigand, J., Leito, I.: Negative electrospray ionization via deprotonation: predicting the ionization efficiency. Anal. Chem. 86, 4822–4830 (2014)

  22. Eckert, F., Klamt, A. COSMOtherm, Version C3.0, Revision 12.01, COSMOlogic GmbH & CoKG: Leverkusen, Germany, 2011, http://www.cosmologic.de

  23. Ahlrichs, R., Bär, M., Baron, H.-P., Bauernschmitt, R., Böcker, S., Ehrig, M., Eichkorn, K., Elliott, S., Furche, F., Haase, F., Häser, M., Horn, H., Hattig, C., Huber, C., Huniar, U., Kattannek, M., Köhn, M., Kölmel, C., Kollwitz, M., May, K., Ochsenfeld, C., Öhm, H., Schäfer, A., Schneider, U., Treutler, O., von Arnim, M., Weigend, F., Weis, P., Weiss, H.: TURBOMOLE V6.2 2010, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007. Available from http://www.turbomole.com

  24. Eckert, F., Leito, I., Kaljurand, I., Kütt, A., Klamt, A., Diedenhofen, M.: Prediction of acidity in acetonitrile solution with COSMO-RS. J. Comput. Chem. 30, 799–810 (2009)

    Article  CAS  Google Scholar 

  25. Hall Jr., H.K.: Correlation of the base strengths of amines. J. Am. Chem. Soc. 79, 5441–5444 (1957)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant No. 8689 from the Estonian Science Foundation, by the Institutional Funding project TLOKT14014I of Ministry of Education and Research of Estonia and by the Estonian Centre of Excellence HIGHTECHMAT SLOKT117T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Leito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaupmees, K., Kaljurand, I. & Leito, I. Influence of Water Content on Basicities in Acetonitrile. J Solution Chem 43, 1270–1281 (2014). https://doi.org/10.1007/s10953-014-0201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0201-4

Keywords

Navigation