Abstract
The interaction of ginkgolic acid (15:1, GA) with human serum albumin (HSA) was investigated by FT–IR, CD and fluorescence spectroscopic methods as well as molecular modeling. FT–IR and CD spectroscopic showed that complexation with the drug alters the protein’s conformation by a major reduction of α-helix from 54 % (free HSA) to 46–31 % (drug–complex), inducing a partial protein destabilization. Fluorescence emission spectra demonstrated that the fluorescence quenching of HSA by GA was by a static quenching process with binding constants on the order of 105 L·mol−1. The thermodynamic parameters (ΔH = −28.26 kJ·mol−1, ΔS = 11.55 J·mol−1·K−1) indicate that hydrophobic forces play a leading role in the formation of the GA–HSA complex. The ratio of GA and HSA in the complex is 1:1 and the binding distance between them was calculated as 2.2 nm based on the Förster theory, which indicates that the energy transfer from the tryptophan residue in HSA to GA occurs with high probability. On the other hand, molecular docking studies reveal that GA binds to Site II of HSA (sub-domain IIIA), and it also shows that several amino acids participate in drug–protein complexation, which is stabilized by H-bonding.
Similar content being viewed by others
References
Xia, H.J., Wang, X.D., Li, L., Wang, S.J., Guo, C.C., Liu, Y., Yu, L.S., Jiang, H.D., Zeng, S.: Development of high performance liquid chromatography/electrospray ionization mass spectrometry for assay of ginkgolic acid (15:1) in rat plasma and its application to pharmacokinetics study. J. Chromatogr. B 878, 2701–2706 (2010)
Zhou, C.C., Li, X.Y., Du, W., Feng, Y., Kong, X.L., Li, Y., Xiao, L.Y., Zhang, P.: Antitumor effects of ginkgolic acid in human cancer cell occur via cell cycle arrest and decrease the bcl-2/bax ratio to induce apoptosis. Chemotherapy 56, 393–402 (2010)
Smith, J.V., Luo, Y.: Studies on molecular mechanisms of Ginkgo biloba extract. Appl. Microbiol. Biotechnol. 64, 465–472 (2004)
Van Beek, T.A., Montoro, P.: Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A. 1216, 2002–2032 (2009)
Tian, M.Y., Zhang, X.F., Xie, L., Xiang, J.F., Tang, Y.L., Zhao, C.Q.: The effect of Cu2+ on the interaction between an antitumor drug-mitoxantrone and human serum albumin. J. Mol. Struct. 892, 20–24 (2008)
Carter, D.C., Ho, J.X.: Structure of serum albumin. Adv. Protein Chem. 45, 153–203 (1994)
Faridbod, F., Ganjali, M.R., Larijani, B., Riahi, S., Saboury, A.A., Hosseini, M., Norouzi, P., Pillip, C.: Interaction study of pioglitazone with albumin by fluorescence spectroscopy and molecular docking. Spectrochim. Acta A 78, 96–101 (2011)
Shahabadi, N., Maghsudi, M.: Binding studies of a new copper(II) complex containing mixed aliphatic and aromatic dinitrogen ligands with bovine serum albumin using different instrumental methods. J. Mol. Struct. 929, 193–199 (2009)
Peters, T.: All About Albumin. Academic Press, San Diego, CA (1996)
Ang, W.H., Daldini, E., Juillerat-Jeanneret, L., Dyson, P.J.: Strategy to tether organometallic ruthenium–arene anticancer compounds to recombinant human serum albumin. Inorg. Chem. 46, 9048–9050 (2007)
Chuang, V.T.G., Kragh-Hansen, U., Otagiri, M.: Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm. Res. 19, 569–577 (2002)
He, X.M., Carter, D.C.: Atomic structure and chemistry of human serum albumin. Nature 358, 209–215 (1992)
Peters Jr, T.: Serum albumin. Adv. Protein. Chem. 37, 161–245 (1985)
Tayeh, N., Rungassamy, T., Albani, J.R.: Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins. J. Pharm. Biomed. Anal. 50, 107–116 (2009)
Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York (2006)
Dousseau, F., Therrien, M., Pezolet, M.: On the spectral subtraction of water from the FT–IR spectra of aqueous solutions of proteins. Appl. Spectrosc. 43, 538–542 (1989)
Wang, J.Z., Lin, T., Teng, T., Xie, S.S., Zhu, G.F., Du, L.F.: Spectroscopic studies on the irreversible heat-induced structural transition of Pin1. Spectrochim. Acta A 78, 142–147 (2011)
Wang, J.Z., Lin, T., Zhu, G.F., Du, L.F.: Stability of Pin1 as revealed by thermal and spectroscopic studies. J. Mol. Struct. 975, 310–316 (2010)
Xu, Y., Wang, J.Z., Li, J.S., Huang, X.H., Xing, Z.H., Du, L.F.: Heat treatment-induced functional and structural aspects of Mus musculus TAp63γ. J. Mol. Struct. 996, 42–47 (2011)
Sugio, S., Kashima, A., Mochizuki, S., Noda, M., Kobayashi, K.: Crystal structure of human serum albumin at 2.5 Å resolution. Protein. Eng. 12, 439–446 (1999)
Beauchemin, R., N’soukpoe-Kossi, C.N., Thomas, T.J., Thomas, T., Carpentier, R., Tajmir-Riahi, H.A.: Polyamine analogues bind human serum albumin. Biomacromolecules 8, 3177–3183 (2007)
Tang, J.H., Liang, G.B., Zheng, C.Z., Lian, N.: Investigation on the binding behavior of ellagic acid to human serum albumin in aqueous solution. J. Solution Chem. 42, 226–238 (2013)
Krimm, S., Bandekar, J.: Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 38, 181–364 (1986)
Byler, D.M., Susi, H.: Examination of the secondary structure of protein by deconvoluted FTIR spectra. Biopolymers 25, 469–487 (1986)
Ahmed-Ouameur, A., Diamantoglou, S., Sedaghat-Herati, M.R., Nafisi, S.H., Carpentier, R., Tajmir-Riahi, H.A.: An overview of drug binding to human serum albumin: Protein folding and unfolding. Cell Biochem. Biophys. 45, 203–213 (2006)
Froehlich, E., Mandeville, J.S., Jennings, C.J., Sedaghat-Herati, R., Tajmir-Riahi, H.A.: Dendrimers bind human serum albumin. J. Phys. Chem. B 113, 6986–6993 (2009)
Agudelo, D., Bourassa, P., Bruneau, J., Bérubé, G., Asselin, E., Tajmir-Riahi, H.A.: Probing the binding sites of antibiotic drugs doxorubicin and n-(trifluoroacetyl) doxorubicin with human and bovine serum albumins. PLOS One 8, 43814 (2012)
Ju, P., Fan, H., Liu, T., Cui, L., Ai, S.: Probing the interaction of flower-like CdSe nanostructure particles targeted to bovine serum albumin using spectroscopic techniques. J. Lumin. 131, 1724–1730 (2011)
Tian, J., Xie, Y., Zhao, Y., Li, C., Zhao, S.: Spectroscopy characterization of the interaction between brevifolin carboxylic acid and bovine serum albumin. Luminescence 26, 296–304 (2011)
Shi, X., Li, X., Gui, M., Zhou, H., Yang, R., Zhang, H., Jin, Y.: Studies on interaction between flavonoids and bovine serum albumin by spectral methods. J. Lumin. 130, 637–644 (2010)
Zhang, J., Sun, H.H., Zhang, Y.Z., Yang, L.Y., Dai, J., Liu, Y.: Interaction of human serum albumin with indomethacin: spectroscopic and molecular modeling studies. J. Solution Chem. 41, 422–435 (2012)
Du, W., Teng, T., Zhou, C.C., Xi, L., Wang, J.Z.: Spectroscopic studies on the interaction of bovine serum albumin with ginkgolic acid: Binding characteristics and structural analysis. J. Lumin. 132, 1207–1214 (2012)
Zhao, X., Sheng, F., Zheng, J., Liu, R.: Composition and stability of anthocyanins from purple Solanum tuberosum and their protective influence on Cr(VI) targeted to bovine serum albumin. J. Agric. Food Chem. 59, 7902–7909 (2011)
Katrahalli, U., Kalalbandi, V.K.A., Jaldappagari, S.: The effect of anti-tubercular drug, ethionamide on the secondary structure of serum albumins: a biophysical study. J. Pharm. Biomed. Anal. 59, 102–108 (2012)
Cheng, Z.-J.: Comparative studies on the interactions of honokiol and magnolol with human serum albumin. J. Pharm. Biomed. Anal. 66, 240–251 (2012)
Sudha, N., Enoch, I.M.V.: Interaction of curculigosides and their β-cyclodextrin complexes with bovine serum albumin: a fluorescence spectroscopic study. J. Solution Chem. 40, 1755–1768 (2011)
Dubeau, S., Bourassa, P., Thomas, T.J., Tajmir-Riahi, H.A.: Biogenic and synthetic polyamines bind bovine serum albumin. Biomacromolecules 11, 1507–1515 (2010)
Yang, Y., Yu, X.Y., Tong, W.H., Lu, S.Y., Liu, H.T., Yao, Q., Zhou, H.: Investigation of the interaction between novel spiro thiazolo[3,2-a] [1, 3, 5] triazines and bovine serum albumin by spectroscopic methods. J. Solution Chem. 42, 666–675 (2013)
Zhou, N., Liang, Y.Z., Wang, P.: Characterization of the interaction between furosemide and bovine serum albumin. J. Mol. Struct. 872, 190–196 (2008)
Kumar, R.S., van den Bergh, H., Wagnières, G.: Probing the interaction between a surfactant–cobalt(III) complex and bovine serum albumin. J. Solution Chem. 41, 294–306 (2012)
Yue, Y.Y., Liu, J.M., Fan, J., Yao, X.J.: Binding studies of phloridzin with human serum albumin and its effect on the conformation of protein. J. Pharm. Biomed. Anal. 56, 336–342 (2011)
Kratochwil, N.A., Huber, W., Muller, F., Kansy, M., Gerber, P.R.: Predicting plasma protein binding of drugs: a new approach. Biochem. Pharmacol. 64, 1355–1374 (2002)
Sheng, L.J., Ding, H., Wang, Z., Song, G.W.: Binding of amphiphilic p(DMAEMA79-b-AZOM5) diblock copolymer with bovine serum albumin—a spectroscopic investigation with warfarin and ibuprofen as site markers. J. Mol. Struct. 979, 152–159 (2010)
Li, S., Yao, D., Bian, H.D., Chen, Z.F., Yu, J., Yu, Q., Liang, H.: Interaction between plumbagin and human serum albumin by fluorescence spectroscopy. J. Solution Chem. 40, 709–718 (2011)
Yu, X.Y., Yao, Q., Li, W., Liao, X.C., Yang, Y., Liu, H.T., Li, X.F., Yi, P.G.: Investigation of the interaction between n-benzyl piperidones and bovine serum albumin by spectroscopic approaches. J. Solution Chem. 41, 1747–1758 (2012)
Zhang, W.J., Xiong, X.J., Wang, F., Ge, Y.S., Liu, Y.: Studies of the interaction between ronidazole and human serum albumin by spectroscopic and molecular docking methods. J. Solution Chem. 42, 1194–1206 (2013)
Bi, S., Sun, Y., Qiao, C., Zhang, H., Liu, C.: Binding of several anti-tumor drugs to bovine serum albumin: fluorescence study. J. Lumin. 129, 541–547 (2009)
Förster, T., Sinanoglu, O. (eds.): Modern Quantum Chemistry, vol. 3, pp. 93–138. Academic Press, New York (1996)
Cyril, L., Earl, J.K., Sperry, W.M.: Biochemists’ Handbook, pp. 84–88. E & FN Epon Press Ltd., London (1961)
Jiang, C.Q., Gao, M.X., Meng, X.Z.: Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples. Spectrochim. Acta A 59, 1605–1610 (2003)
Wang, J., Guo, Y.W., Liu, B., Cheng, C.P., Wang, Z.Q., Han, G.X., Gao, J.Q., Zhang, X.D.: Spectroscopic analyses on interaction of bovine serum albumin (BSA) with toluidine blue (TB) and its sonodynamic damage under ultrasonic irradiation. J. Lumin. 131, 231–237 (2011)
Carter, D.C., He, X.M., Munson, S.H., Twigg, P.D., Gernert, K.M., Broom, M.B., Miller, T.Y.: Three-dimensional structure of human serum albumin Science 244, 1195–1198 (1989)
Dockal, M., Carter, D.C., Ruker, F.: Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J. Biol. Chem. 275, 3042–3050 (2000)
Acknowledgments
The authors thank Zhi-Hua Xing from the Institute for Nanobiomedical Technology and Membrane Biology (Sichuan University, Chengdu, P.R. China) for her kind help with the CD measurements. This work was financially supported by the National Key Technology R&D program of China (no. 2006BAF07B01) and 985 program from Sichuan University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhu, Gf., Wang, Y., Liu, J. et al. Interaction Between Ginkgolic Acid and Human Serum Albumin by Spectroscopy and Molecular Modeling Methods. J Solution Chem 43, 1232–1249 (2014). https://doi.org/10.1007/s10953-014-0200-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-014-0200-5