Skip to main content
Log in

Interaction Between Ginkgolic Acid and Human Serum Albumin by Spectroscopy and Molecular Modeling Methods

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The interaction of ginkgolic acid (15:1, GA) with human serum albumin (HSA) was investigated by FT–IR, CD and fluorescence spectroscopic methods as well as molecular modeling. FT–IR and CD spectroscopic showed that complexation with the drug alters the protein’s conformation by a major reduction of α-helix from 54 % (free HSA) to 46–31 % (drug–complex), inducing a partial protein destabilization. Fluorescence emission spectra demonstrated that the fluorescence quenching of HSA by GA was by a static quenching process with binding constants on the order of 105 L·mol−1. The thermodynamic parameters (ΔH = −28.26 kJ·mol−1, ΔS = 11.55 J·mol−1·K−1) indicate that hydrophobic forces play a leading role in the formation of the GA–HSA complex. The ratio of GA and HSA in the complex is 1:1 and the binding distance between them was calculated as 2.2 nm based on the Förster theory, which indicates that the energy transfer from the tryptophan residue in HSA to GA occurs with high probability. On the other hand, molecular docking studies reveal that GA binds to Site II of HSA (sub-domain IIIA), and it also shows that several amino acids participate in drug–protein complexation, which is stabilized by H-bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xia, H.J., Wang, X.D., Li, L., Wang, S.J., Guo, C.C., Liu, Y., Yu, L.S., Jiang, H.D., Zeng, S.: Development of high performance liquid chromatography/electrospray ionization mass spectrometry for assay of ginkgolic acid (15:1) in rat plasma and its application to pharmacokinetics study. J. Chromatogr. B 878, 2701–2706 (2010)

    Article  CAS  Google Scholar 

  2. Zhou, C.C., Li, X.Y., Du, W., Feng, Y., Kong, X.L., Li, Y., Xiao, L.Y., Zhang, P.: Antitumor effects of ginkgolic acid in human cancer cell occur via cell cycle arrest and decrease the bcl-2/bax ratio to induce apoptosis. Chemotherapy 56, 393–402 (2010)

    Article  CAS  Google Scholar 

  3. Smith, J.V., Luo, Y.: Studies on molecular mechanisms of Ginkgo biloba extract. Appl. Microbiol. Biotechnol. 64, 465–472 (2004)

    Article  CAS  Google Scholar 

  4. Van Beek, T.A., Montoro, P.: Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A. 1216, 2002–2032 (2009)

    Article  Google Scholar 

  5. Tian, M.Y., Zhang, X.F., Xie, L., Xiang, J.F., Tang, Y.L., Zhao, C.Q.: The effect of Cu2+ on the interaction between an antitumor drug-mitoxantrone and human serum albumin. J. Mol. Struct. 892, 20–24 (2008)

    Article  CAS  Google Scholar 

  6. Carter, D.C., Ho, J.X.: Structure of serum albumin. Adv. Protein Chem. 45, 153–203 (1994)

    Article  CAS  Google Scholar 

  7. Faridbod, F., Ganjali, M.R., Larijani, B., Riahi, S., Saboury, A.A., Hosseini, M., Norouzi, P., Pillip, C.: Interaction study of pioglitazone with albumin by fluorescence spectroscopy and molecular docking. Spectrochim. Acta A 78, 96–101 (2011)

    Article  Google Scholar 

  8. Shahabadi, N., Maghsudi, M.: Binding studies of a new copper(II) complex containing mixed aliphatic and aromatic dinitrogen ligands with bovine serum albumin using different instrumental methods. J. Mol. Struct. 929, 193–199 (2009)

    Article  CAS  Google Scholar 

  9. Peters, T.: All About Albumin. Academic Press, San Diego, CA (1996)

    Google Scholar 

  10. Ang, W.H., Daldini, E., Juillerat-Jeanneret, L., Dyson, P.J.: Strategy to tether organometallic ruthenium–arene anticancer compounds to recombinant human serum albumin. Inorg. Chem. 46, 9048–9050 (2007)

    Article  CAS  Google Scholar 

  11. Chuang, V.T.G., Kragh-Hansen, U., Otagiri, M.: Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm. Res. 19, 569–577 (2002)

    Article  Google Scholar 

  12. He, X.M., Carter, D.C.: Atomic structure and chemistry of human serum albumin. Nature 358, 209–215 (1992)

    Article  CAS  Google Scholar 

  13. Peters Jr, T.: Serum albumin. Adv. Protein. Chem. 37, 161–245 (1985)

    Article  CAS  Google Scholar 

  14. Tayeh, N., Rungassamy, T., Albani, J.R.: Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins. J. Pharm. Biomed. Anal. 50, 107–116 (2009)

    Article  CAS  Google Scholar 

  15. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York (2006)

    Book  Google Scholar 

  16. Dousseau, F., Therrien, M., Pezolet, M.: On the spectral subtraction of water from the FT–IR spectra of aqueous solutions of proteins. Appl. Spectrosc. 43, 538–542 (1989)

    Article  CAS  Google Scholar 

  17. Wang, J.Z., Lin, T., Teng, T., Xie, S.S., Zhu, G.F., Du, L.F.: Spectroscopic studies on the irreversible heat-induced structural transition of Pin1. Spectrochim. Acta A 78, 142–147 (2011)

    Article  Google Scholar 

  18. Wang, J.Z., Lin, T., Zhu, G.F., Du, L.F.: Stability of Pin1 as revealed by thermal and spectroscopic studies. J. Mol. Struct. 975, 310–316 (2010)

    Article  CAS  Google Scholar 

  19. Xu, Y., Wang, J.Z., Li, J.S., Huang, X.H., Xing, Z.H., Du, L.F.: Heat treatment-induced functional and structural aspects of Mus musculus TAp63γ. J. Mol. Struct. 996, 42–47 (2011)

    Article  CAS  Google Scholar 

  20. Sugio, S., Kashima, A., Mochizuki, S., Noda, M., Kobayashi, K.: Crystal structure of human serum albumin at 2.5 Å resolution. Protein. Eng. 12, 439–446 (1999)

    Article  CAS  Google Scholar 

  21. Beauchemin, R., N’soukpoe-Kossi, C.N., Thomas, T.J., Thomas, T., Carpentier, R., Tajmir-Riahi, H.A.: Polyamine analogues bind human serum albumin. Biomacromolecules 8, 3177–3183 (2007)

    Article  CAS  Google Scholar 

  22. Tang, J.H., Liang, G.B., Zheng, C.Z., Lian, N.: Investigation on the binding behavior of ellagic acid to human serum albumin in aqueous solution. J. Solution Chem. 42, 226–238 (2013)

    Article  CAS  Google Scholar 

  23. Krimm, S., Bandekar, J.: Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 38, 181–364 (1986)

    Article  CAS  Google Scholar 

  24. Byler, D.M., Susi, H.: Examination of the secondary structure of protein by deconvoluted FTIR spectra. Biopolymers 25, 469–487 (1986)

    Article  CAS  Google Scholar 

  25. Ahmed-Ouameur, A., Diamantoglou, S., Sedaghat-Herati, M.R., Nafisi, S.H., Carpentier, R., Tajmir-Riahi, H.A.: An overview of drug binding to human serum albumin: Protein folding and unfolding. Cell Biochem. Biophys. 45, 203–213 (2006)

    Article  CAS  Google Scholar 

  26. Froehlich, E., Mandeville, J.S., Jennings, C.J., Sedaghat-Herati, R., Tajmir-Riahi, H.A.: Dendrimers bind human serum albumin. J. Phys. Chem. B 113, 6986–6993 (2009)

    Article  CAS  Google Scholar 

  27. Agudelo, D., Bourassa, P., Bruneau, J., Bérubé, G., Asselin, E., Tajmir-Riahi, H.A.: Probing the binding sites of antibiotic drugs doxorubicin and n-(trifluoroacetyl) doxorubicin with human and bovine serum albumins. PLOS One 8, 43814 (2012)

    Article  Google Scholar 

  28. Ju, P., Fan, H., Liu, T., Cui, L., Ai, S.: Probing the interaction of flower-like CdSe nanostructure particles targeted to bovine serum albumin using spectroscopic techniques. J. Lumin. 131, 1724–1730 (2011)

    Article  CAS  Google Scholar 

  29. Tian, J., Xie, Y., Zhao, Y., Li, C., Zhao, S.: Spectroscopy characterization of the interaction between brevifolin carboxylic acid and bovine serum albumin. Luminescence 26, 296–304 (2011)

    Article  CAS  Google Scholar 

  30. Shi, X., Li, X., Gui, M., Zhou, H., Yang, R., Zhang, H., Jin, Y.: Studies on interaction between flavonoids and bovine serum albumin by spectral methods. J. Lumin. 130, 637–644 (2010)

    Article  CAS  Google Scholar 

  31. Zhang, J., Sun, H.H., Zhang, Y.Z., Yang, L.Y., Dai, J., Liu, Y.: Interaction of human serum albumin with indomethacin: spectroscopic and molecular modeling studies. J. Solution Chem. 41, 422–435 (2012)

    Article  CAS  Google Scholar 

  32. Du, W., Teng, T., Zhou, C.C., Xi, L., Wang, J.Z.: Spectroscopic studies on the interaction of bovine serum albumin with ginkgolic acid: Binding characteristics and structural analysis. J. Lumin. 132, 1207–1214 (2012)

    Article  CAS  Google Scholar 

  33. Zhao, X., Sheng, F., Zheng, J., Liu, R.: Composition and stability of anthocyanins from purple Solanum tuberosum and their protective influence on Cr(VI) targeted to bovine serum albumin. J. Agric. Food Chem. 59, 7902–7909 (2011)

    Article  CAS  Google Scholar 

  34. Katrahalli, U., Kalalbandi, V.K.A., Jaldappagari, S.: The effect of anti-tubercular drug, ethionamide on the secondary structure of serum albumins: a biophysical study. J. Pharm. Biomed. Anal. 59, 102–108 (2012)

    Article  CAS  Google Scholar 

  35. Cheng, Z.-J.: Comparative studies on the interactions of honokiol and magnolol with human serum albumin. J. Pharm. Biomed. Anal. 66, 240–251 (2012)

    Article  CAS  Google Scholar 

  36. Sudha, N., Enoch, I.M.V.: Interaction of curculigosides and their β-cyclodextrin complexes with bovine serum albumin: a fluorescence spectroscopic study. J. Solution Chem. 40, 1755–1768 (2011)

    Article  CAS  Google Scholar 

  37. Dubeau, S., Bourassa, P., Thomas, T.J., Tajmir-Riahi, H.A.: Biogenic and synthetic polyamines bind bovine serum albumin. Biomacromolecules 11, 1507–1515 (2010)

    Article  CAS  Google Scholar 

  38. Yang, Y., Yu, X.Y., Tong, W.H., Lu, S.Y., Liu, H.T., Yao, Q., Zhou, H.: Investigation of the interaction between novel spiro thiazolo[3,2-a] [1, 3, 5] triazines and bovine serum albumin by spectroscopic methods. J. Solution Chem. 42, 666–675 (2013)

    Article  CAS  Google Scholar 

  39. Zhou, N., Liang, Y.Z., Wang, P.: Characterization of the interaction between furosemide and bovine serum albumin. J. Mol. Struct. 872, 190–196 (2008)

    Article  CAS  Google Scholar 

  40. Kumar, R.S., van den Bergh, H., Wagnières, G.: Probing the interaction between a surfactant–cobalt(III) complex and bovine serum albumin. J. Solution Chem. 41, 294–306 (2012)

    Article  Google Scholar 

  41. Yue, Y.Y., Liu, J.M., Fan, J., Yao, X.J.: Binding studies of phloridzin with human serum albumin and its effect on the conformation of protein. J. Pharm. Biomed. Anal. 56, 336–342 (2011)

    Article  CAS  Google Scholar 

  42. Kratochwil, N.A., Huber, W., Muller, F., Kansy, M., Gerber, P.R.: Predicting plasma protein binding of drugs: a new approach. Biochem. Pharmacol. 64, 1355–1374 (2002)

    Article  CAS  Google Scholar 

  43. Sheng, L.J., Ding, H., Wang, Z., Song, G.W.: Binding of amphiphilic p(DMAEMA79-b-AZOM5) diblock copolymer with bovine serum albumin—a spectroscopic investigation with warfarin and ibuprofen as site markers. J. Mol. Struct. 979, 152–159 (2010)

    Article  CAS  Google Scholar 

  44. Li, S., Yao, D., Bian, H.D., Chen, Z.F., Yu, J., Yu, Q., Liang, H.: Interaction between plumbagin and human serum albumin by fluorescence spectroscopy. J. Solution Chem. 40, 709–718 (2011)

    Article  CAS  Google Scholar 

  45. Yu, X.Y., Yao, Q., Li, W., Liao, X.C., Yang, Y., Liu, H.T., Li, X.F., Yi, P.G.: Investigation of the interaction between n-benzyl piperidones and bovine serum albumin by spectroscopic approaches. J. Solution Chem. 41, 1747–1758 (2012)

    Article  CAS  Google Scholar 

  46. Zhang, W.J., Xiong, X.J., Wang, F., Ge, Y.S., Liu, Y.: Studies of the interaction between ronidazole and human serum albumin by spectroscopic and molecular docking methods. J. Solution Chem. 42, 1194–1206 (2013)

    Article  Google Scholar 

  47. Bi, S., Sun, Y., Qiao, C., Zhang, H., Liu, C.: Binding of several anti-tumor drugs to bovine serum albumin: fluorescence study. J. Lumin. 129, 541–547 (2009)

    Article  CAS  Google Scholar 

  48. Förster, T., Sinanoglu, O. (eds.): Modern Quantum Chemistry, vol. 3, pp. 93–138. Academic Press, New York (1996)

  49. Cyril, L., Earl, J.K., Sperry, W.M.: Biochemists’ Handbook, pp. 84–88. E & FN Epon Press Ltd., London (1961)

  50. Jiang, C.Q., Gao, M.X., Meng, X.Z.: Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples. Spectrochim. Acta A 59, 1605–1610 (2003)

    Article  Google Scholar 

  51. Wang, J., Guo, Y.W., Liu, B., Cheng, C.P., Wang, Z.Q., Han, G.X., Gao, J.Q., Zhang, X.D.: Spectroscopic analyses on interaction of bovine serum albumin (BSA) with toluidine blue (TB) and its sonodynamic damage under ultrasonic irradiation. J. Lumin. 131, 231–237 (2011)

    Article  CAS  Google Scholar 

  52. Carter, D.C., He, X.M., Munson, S.H., Twigg, P.D., Gernert, K.M., Broom, M.B., Miller, T.Y.: Three-dimensional structure of human serum albumin Science 244, 1195–1198 (1989)

    CAS  Google Scholar 

  53. Dockal, M., Carter, D.C., Ruker, F.: Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J. Biol. Chem. 275, 3042–3050 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Zhi-Hua Xing from the Institute for Nanobiomedical Technology and Membrane Biology (Sichuan University, Chengdu, P.R. China) for her kind help with the CD measurements. This work was financially supported by the National Key Technology R&D program of China (no. 2006BAF07B01) and 985 program from Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-fang Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Gf., Wang, Y., Liu, J. et al. Interaction Between Ginkgolic Acid and Human Serum Albumin by Spectroscopy and Molecular Modeling Methods. J Solution Chem 43, 1232–1249 (2014). https://doi.org/10.1007/s10953-014-0200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0200-5

Keywords

Navigation