Skip to main content
Log in

Speciation and NMR Spectrometric Studies of Interaction of Di- and Tri-organotin(IV) Moieties with 5′-Guanosine Monophosphate and Guanosine in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Potentiometric studies of the interaction of (Me2Sn)2+ and (Me3Sn)+ with 5′-guanosine monophosphate [(5′-HGMP)2−, abbreviated as (HL-1)2−] and guanosine [(HGUO), abbreviated as (HL-2)] in aqueous solution (I = 0.1 mol·dm−3 KNO3, 298.15 ± 0.1 K) were performed, and the speciation of various complex species was evaluated as a function of pH. The species that exist at physiological pH ~7.0 are Me2Sn(HL-1)/[Me2Sn(HL-2)]2+ (87.0/88.8 %), [Me2Sn(HL-1)(OH)]/[Me2Sn(HL-2)(OH)]+ (3.0/0 %) and [Me2Sn(HL-1H−1)]/[Me2Sn(HL-2H−1)]2+ (9.4/6.6 %) for 1:1 dimethyltin(IV):5′-guanosine monophosphate/dimethyltin(IV): guanosine systems, whereas for the corresponding 1:2 systems, the species are Me2Sn(HL-1)/[Me2Sn(HL-2)]2+ (44.0/92.0 %), [Me2Sn(HL-1H−1)]/[Me2Sn(HL-2H−1)]2+ (5.0/6.0 %), Me2Sn(OH)2 (49.0/0 %), [Me2Sn(HL-1)(OH)]/[Me2Sn(HL-2)(OH)]+ (1.5/2.0 %), and [Me2Sn(OH)]+ (1.0/0 %). For 1:1 trimethyltin(IV):5′-guanosine monophosphate/trimethyltin(IV):guanosine systems, only [Me3Sn(HL-1)]/[Me3Sn(HL-2)]+ (99.9 %) are found at pH = 7.0, whereas for 1:2 systems, [Me3Sn(HL-1)]/[Me3Sn(HL-2)]+ (49.8/100 %), Me3Sn(OH) (15.0/0 %) and [Me3Sn(HL-1)(OH)]2−/Me3Sn(HL-2)(OH) (0.2/0 %) are the species found. No polymeric species were detected. Beyond pH = 8.0, significant amounts of [Me2Sn(OH)]+, Me2Sn(OH)2, [Me2Sn(OH)3] and Me3Sn(OH) are formed. Multinuclear (1H, 13C and 119Sn) NMR studies at different pHs indicated a distorted octahedral geometry for the species Me2Sn(HL-1)/[Me2Sn(HL-2)]2+ in dimethyltin(IV)-(HL-1)2−/(HL-2) systems and a distorted trigonal bipyramidal/distorted tetrahedral geometry for the species [Me3Sn(HL-1)]/[Me3Sn(HL-2)]+ in trimethyltin(IV)-(HL-1)2−/(HL-2) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Cima, F., Craig, P.J., Harrington, C.: Organotin compounds in the environment. In: Craig, P.J. (ed.) Organometallic Compounds in the Environment, 2nd edn, pp. 101–157. Wiley, Chicester (2003)

    Chapter  Google Scholar 

  2. Nath, M., Eng, G., Song, X., Beraldo, H., De Lima, G.M., Pettinari, C., Marchetti, F., Whalen, M.M., Beltrán, H.I., Santillan, R., Farfán, N.: Chap 4: Medicinal/biocidal applications of tin compounds and environmental aspects. In: Davies, A.G., Gielen, M., Pannell, K.H., Tiekink, E.R.T. (eds.) Tin Chemistry Fundamentals Frontiers and Applications, pp. 413–496. Wiley, London (2008)

    Google Scholar 

  3. Champ, M.A., Seligman, P.F.: Chap 1: An introduction to organotin compounds and their use in antifouling coatings. In: Champ, M.A., Seligman, P.F. (eds.) Organotin: Environmental Fate and Effects, pp. 1–27. Chapman & Hall, London (1996)

    Chapter  Google Scholar 

  4. Grant, M.H., Kroschwitz, J.I.: Tin compounds. Kirk-Othmer Encyclopedia of Chemical Technology, vol. 24, 4th edn. Wiley, New York (1997)

    Google Scholar 

  5. Jousseaume, B., Noiret, N., Pereyre, M., Saux, A., Frances, J.M.: Air activated organotin catalysts for silicone curing and polyurethane preparation. Organometallics 13, 1034–1038 (1994)

    Article  CAS  Google Scholar 

  6. Jackson, J.A., Blair, W.R., Brinckman, F.E., Iverson, W.P.: Gas-chromatographic speciation of methylstannanes in the Chesapeake Bay using purge and trap sampling with a tin-selective detector. Environ. Sci. Technol. 16, 110–119 (1982)

    Article  CAS  Google Scholar 

  7. Fent, K.: Ecotoxicology of organotin compounds. Crit. Rev. Toxicol. 26, 3–117 (1996)

    Article  Google Scholar 

  8. Byrd, J.T., Andreae, M.O.: Tin and methyltin species in seawater: concentrations and fluxes. Science 218, 565–569 (1982)

    Article  CAS  Google Scholar 

  9. Mizukawa, H., Takahashi, S., Nakayama, K., Sudo, A., Tanabe, S.: Contamination and accumulation feature of organotin compounds in common cormorants (Phalacrocorax carbo) from lake Biwa, Japan. Interdiscip. Stud. Environ. Chem.—Environ. Res. Asia 153–161 (2009)

  10. Meng-Pei, H., Shiu-Mei, L.: Accumulation of organotin compounds in Pacific oysters, Crassostrea gigas, collected from aquaculture sites in Taiwan. Sci. Total Environ. 313, 41–48 (2003)

    Article  Google Scholar 

  11. El Hassani, L.H., Frenich, A.G., Vidal, J.L., Muros, M.J.S., Benajiba, M.H.: Study of the accumulation of tributyltin and triphenyltin compounds and their main metabolites in the sea bass, Dicentrachus labrax, under laboratory conditions. Sci. Total Environ. 348, 191–198 (2005)

    Article  Google Scholar 

  12. Strand, J., Jacobsen, J.A.: Accumulation and trophic transfer of organotins in a marine food web from the Danish coastal waters. Sci. Total Environ. 350, 72–85 (2005)

    Article  CAS  Google Scholar 

  13. Arena, G., Contino, A., Musumeci, S., Purrello, R.: Formation and stability constants of dimethyltin(IV) complexes with citrate, tripolyphosphate and nitrilotriacetate in aqueous solution. J. Chem. Soc. Dalton Trans. 3383–3387 (1990). doi:10.1039/DT9900003383

  14. Hynes, M.J., Keely, J.M., McManus, J.: Investigation of the hydrolysis of [Sn(CH3)3(H2O)2]+ in aqueous solution by tin-119 nuclear magnetic resonance spectroscopy. J. Chem. Soc. Dalton Trans. 3427–3429 (1991). doi:10.1039/DT9910003427

  15. Barbieri, R., Silvestri, A.: The hydrolysis of Me2SnIV and Me3SnIV moieties monitored through 119Sn Mössbauer spectroscopy. Inorg. Chim. Acta 188, 95–98 (1991)

    Article  CAS  Google Scholar 

  16. Natsume, T., Aizawa, S., Hatano, K., Funahashi, S.: Hydrolysis, polymerization, and structure of dimethyltin(IV) in aqueous solution. Molecular structure of the polymer [(SnMe2)2(OH)3]ClO4. J. Chem. Soc. Dalton Trans. 2749–2753 (1994). doi:10.1039/DT9940002749

  17. Takahashi, A., Natsume, T., Koshino, N., Funahashi, S., Inada, Y., Takagi, H.D.: Speciation of trimethyltin(IV): hydrolysis, complexation equilibria, and structures of trimethyltin(IV) ion in aqueous solution. Can. J. Chem. 75, 1084–1092 (1997)

    Article  CAS  Google Scholar 

  18. Pellerito, L., Nagy, L.: Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord. Chem. Rev. 224, 111–150 (2002)

    Article  CAS  Google Scholar 

  19. Jankovics, H., Nagy, L., Buzás, N., Pellerito, L., Barbieri, R.: Coordination properties of adenosine-5′-monophosphate and related ligands towards Me2Sn(IV)2+ in aqueous solution. J. Inorg. Biochem. 92, 55–64 (2002)

    Article  CAS  Google Scholar 

  20. Jankovics, H., Nagy, L., Kele, Z., Pettinari, C., D’Agati, P., Mansueto, C., Pellerito, C., Pellerito, L.: Coordination properties of the ACE inhibitor captopril towards Me2Sn(IV)2+ in aqueous solution, and biological aspects of some dimethyltin(IV) derivatives of this ligand. J. Organomet. Chem. 668, 129–139 (2003)

    Article  CAS  Google Scholar 

  21. Nath, M., Jairath, R., Mukherjee, G.N., Das, A.: Speciation of dimethyltin(IV) and trimethyltin(IV) cations with some biologically important ligands in aqueous medium: a potentiometric investigation. Indian J. Chem. 44A, 1602–1607 (2005)

    CAS  Google Scholar 

  22. Nath, M.: Sulaxna: Potentiometric and multinuclear NMR investigations of di-/trimethyltin(IV) cations with some heterocyclic thiones in aqueous media. New J. Chem. 31, 418–428 (2007)

    Article  CAS  Google Scholar 

  23. Cigala, M.R., De Stefano, C., Giacalone, A., Gianguzza, A., Sammartano, S.: Hydrolysis of monomethyl-, dimethyl-, and trimethyltin(IV) cations in fairly concentrated aqueous solutions at I = 1 mol L–1 (NaNO3) and T = 298.15 K. Evidence for the predominance of polynuclear species. J. Chem. Eng. Data 56, 1108–1115 (2011)

    Article  CAS  Google Scholar 

  24. El-Sherif, A.A.: Solution coordination chemistry of organotin(IV) cations with bio-relevant ligands. J. Solution Chem. 41, 1522–1554 (2012)

    Article  CAS  Google Scholar 

  25. Penninks, A.H., Bol-Schoenmakers, M., Sienen, W.: Cellular interaction of organotin compounds in relation to their antitumour activity. In: Gielen, M., Hadjiliadis, N.D. (eds.) Tin-based Antitumour Drugs. NATO ASI Series, vol. H37, p. 169. Springer, Berlin (1990)

    Chapter  Google Scholar 

  26. Tsangaris, J.M., Williams, D.R.: Tin in pharmacy and nutrition. Appl. Organomet. Chem. 6, 3–18 (1992)

    Article  CAS  Google Scholar 

  27. Al-Najjar, A.A., Shehata, M.R., Mohamed, M.M.A., Shoukry, M.M.: Equilibrium studies of organotin(IV) complexes of peptides. Main Group Met. Chem. 22, 253–261 (1999)

    Article  CAS  Google Scholar 

  28. Gielen, M.: Cytotoxic, mutagenic and carcinogenic potential of heavy metals related to human environment. Tin-based antitumor drugs, NATO ASI Series, vol. 26, pp. 445–455. Springer, Netherlands (1997) and references cited therein

  29. Yang, P., Guo, M.: Interactions of organometallic anticancer agents with nucleotides and DNA. Coord. Chem. Rev. 185–186, 189–211 (1999)

    Article  Google Scholar 

  30. Jancsó, A., Nagy, L., Moldrheim, E., Sletten, E.: Potentiometric and spectroscopic evidence for co-ordination of dimethyltin(IV) to phosphate groups of DNA fragments and related ligands. J. Chem. Soc. Dalton Trans. 1587–1594 (1999). doi:10.1039/A901322I

  31. Al-Najjar, A.A., Mohamed, M.M.A., Shoukry, M.M.: Interaction of dipropyltin(IV) amino acids, peptides, dicarboxylic acids and DNA constituents. J. Coord. Chem. 59, 193–206 (2006)

    Article  CAS  Google Scholar 

  32. Roberts, J.J., Pascoe, J.M.: Cross-linking of complementary strands of DNA in mammalian cells by antitumor platinum compounds. Nature 235, 282–284 (1972)

    Article  CAS  Google Scholar 

  33. Nath, M., Singh, H., Eng, G., Song, X., Kumar, A.: Syntheses, characterization and biological activity of diorganotin(IV) derivatives of 2-amino-6-hydroxypurine (guanine). Inorg. Chem. Commun. 12, 1049–1052 (2009)

    Article  CAS  Google Scholar 

  34. Nath, M., Singh, H., Eng, G., Song, X.: Interaction of organotin(IV) moieties with nucleic acid constituent: synthesis, structural characterization and anti-inflammatory activity of tri-i-propyltin(IV) and diorganotin(IV) derivatives of guanosine. Inorg. Chem. Commun. 14, 1381–1385 (2011)

    Article  CAS  Google Scholar 

  35. Nath, M., Singh, H., Eng, G., Song, X.: Interaction of 5′-guanosine monophosphate with organotin(IV) moieties: synthesis, structural characterization, and anti-inflammatory activity. ISRN Org. Chem. 2012, 1–9 (2012)

  36. Sayce, I.G.: Computer calculation of equilibrium constants of species present in mixtures of metal ions and complexing agents. Talanta 15, 1397–1411 (1968)

    Article  CAS  Google Scholar 

  37. Sayce, I.G.: Computer calculation of equilibrium constants by use of the program SCOGS: a correction. Talanta 18, 653–654 (1971)

    Article  CAS  Google Scholar 

  38. Sayce, I.G., Sharma, V.S.: Computer calculation of equilibrium constants using programme SCOGS: A further modification. Talanta 19, 831 (1972)

    Article  CAS  Google Scholar 

  39. Izatt, R.M., Christensen, J.J., Rytting, J.H.: Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem. Rev. 71, 439–481 (1971)

    Article  CAS  Google Scholar 

  40. De Moraes Silva, A., Mercê, A.L.R., Mangrich, A.S., Souto, C.A.T., Felcman, J.: Potentiometric and spectroscopic study of mixed copper(II) complexes with amino acids and either adenosine 5′ triphosphate or phosphocreatine. Polyhedron 25, 1319–1326 (2006)

    Article  Google Scholar 

  41. Al-Najjar, A.A., Mohamed, M.M.A., Shehata, M.R., Shoukry, M.M.: Tripropyltin(IV) complexes with some selected bioligands in 50 % (v/v) dioxane/water mixture. Annali di Chimica, Societa Chimica Italiana 96, 97–107 (2006)

    Article  CAS  Google Scholar 

  42. Gianguzza, A., Giuffrè, O., Piazzese, D., Sammartano, S.: Aqueous solution chemistry of alkyltin(IV) compounds for speciation studies in biological fluids and natural waters. Coord. Chem. Rev. 256, 222–239 (2012)

    Article  CAS  Google Scholar 

  43. De Stefano, C., Gianguzza, A., Giuffrè, O., Piazzese, D., Orecchio, S., Sammartano, S.: Speciation of organotin compounds in NaCl aqueous solution: interaction of mono-, di- and tri-organotin (IV) cations with nucleotide 5′ monophosphates. Appl. Organomet. Chem. 18, 653–661 (2004)

    Article  Google Scholar 

  44. Arena, G., Cali, R., Contino, A., Loretta, N., Musumeci, S., Purrello, R.: Thermodynamic study of dimethyltin(IV) complexes with nucleoside 5′– triphosphates. J. Chem. Soc. Dalton Trans. 2039–2043 (1992). doi:10.1039/DT9920002039

  45. Arena, G., Gianguzza, A., Pellerito, L., Musumeci, S., Purrello, R., Rízzarelli, E.: Coordination properties of dialkyltin(IV) in aqueous solution. Thermodynamics of complex formation with carboxylic acids. J. Chem. Soc. Dalton Trans. Inorg. Chem. 8, 2603–2608 (1990)

    Article  Google Scholar 

  46. Shoukry, M., van Eldik, R.: Correlation between kinetic and thermodynamic complex-formation constants for the interaction of bis(amine)palladium(II) with inosine, inosine 5′-monophosphate and guanosine 5′-monophosphate. J. Chem. Soc. Dalton Trans. 2673–2678 (1996)

  47. Lockhart, T.P., Manders, W.F.: Structure determination by NMR spectroscopy. Correlation of [2J(119Sn, 1H) and the Me-Sn-Me angle in methyltin(IV) compounds. Inorg. Chem. 25, 892–895 (1986)

    Article  CAS  Google Scholar 

  48. Surdy, P., Rubini, P., Buzás, N., Henry, B., Pellerito, L., Gajda, T.: Interaction of dimethyltin(IV)2+ cation with Gly-Gly, Gly-His, and some related ligands. A new case of a metal ion able to promote peptide nitrogen deprotonation in aqueous solution. Inorg. Chem. 38, 346–352 (1999)

    Article  CAS  Google Scholar 

  49. Holeček, J., Nádvorník, M., Handlíř, K., Lyčka, A.: 13C and 119Sn NMR spectra of di-n-butyltin(IV) compounds. J. Organomet. Chem. 315, 299–308 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

Ms. Nagamani Kompelli is thankful to the Ministry of Human Resources development, India, for the award of Junior Research Fellowship (Grant No. MHR 02-23-200-429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala Nath.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, M., Kompelli, N. Speciation and NMR Spectrometric Studies of Interaction of Di- and Tri-organotin(IV) Moieties with 5′-Guanosine Monophosphate and Guanosine in Aqueous Solution. J Solution Chem 43, 1184–1204 (2014). https://doi.org/10.1007/s10953-014-0186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0186-z

Keywords

Navigation