Skip to main content
Log in

Syntheses, Crystal Structures and Ligand Field Properties of Iron(II) Complexes with PNP Ligands: Origin of Large Ligand Field by a Phosphorous Donor Atom

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

New iron(II) complexes were synthesized with two tridentate hybrid ligands having phosphorous and nitrogen donor sites, in order to quantitatively estimate the difference of the ligand-field strengths of phosphorous and nitrogen donor sites in cationic metal complexes. Iron(II) complexes with bis(dimethylphosphinoethyl)amine (PNP) and 2,6-bis(diphenylphosphinomethyl)pyridine (PpyP) ligands crystallized as un-symmetric facial-[Fe(PNP)2](PF6)2·CH3NO2 and mer-[Fe(PpyP)2](CF3SO3)2, respectively, as expected from the steric congestion and from the tendency to avoid the mutual trans influence between two phosphorous donor sites. Both complexes are in the low-spin electronic state up to 400 K. The pseudo-D 4h coordination geometry of the PpyP complex made it possible to separate axial (2 × N) and equatorial (4 × P) contributions to the overall ligand-field by means of a spectrometric method: the difference in the ligand-field strengths by the equatorial Ph2P-donor sites and by the axial 2,6-disubstituted pyridine donor sites is ca. 13,200 cm−1. A significantly reduced inter-electronic repulsion parameter (425 cm−1 for both PNP and PpyP complexes) from the value of the free ion (1,060 cm−1) indicates covalent interaction between the Fe(II) and P atoms even in these cationic metal complexes. It is shown that the degree of covalency as well as the coordination bond strengths between various metal ions and phosphorous/nitrogen donor atoms is successfully explained by the relative energy levels of interacting atomic orbitals calculated on the basis of the Thomas–Fermi–Dirac potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dilworth, J.R., Wheatley, N.: The preparation and coordination chemistry of phosphorus sulfur donor ligands. Coord. Chem. Rev. 199, 89–158 (2000)

    Article  CAS  Google Scholar 

  2. Kinoshita, I., Kashiwabara, K., Fujita, J., Matsumoto, K., Ooi, S.: Preparation, resolution, and absorption and circular dichroism spectra of [Co(en) n {NH2CH2CH2P(CH3)2}3−n ]3+ and the related complexes, and the absolute configuration of (+)589-fac-[Co{NH2CH2CH2P(CH3)2}3]3+ determined by X-ray analysis. Bull. Chem. Soc. Jpn. 54, 2683–2690 (1981)

    Article  CAS  Google Scholar 

  3. Kashiwabara, K., Ozeki, Y., Kita, M., Fujita, J., Nakajima, K.: Synthesis and crystal structure of bis(1,1,1-tris(dimethylphosphinomethyl)ethane)iron(II) tetrafluoroborate dihydrate. Bull. Chem. Soc. Jpn. 68, 3453–3457 (1995)

    Article  CAS  Google Scholar 

  4. Ohishi, T., Ohba, S., Kashiwabara, K., Saito, Y., Fujita, J.: Preparation and crystal structure of bis[(2-aminoethyl)dimethylphosphine][1,2-bis(dimethylphosphino)ethane]cobalt(III) tribromide dihydrate, [Co{NH2CH2CH2P(CH3)2}2-{(CH3)2PCH2CH2P(CH3)2}]Br3·2H2O. Bull. Chem. Soc. Jpn 57, 877–878 (1984)

    Article  CAS  Google Scholar 

  5. Matsuzaki, K., Kawaguchi, H., Voth, P., Noda, K., Itoh, S., Takagi, H.D., Kashiwabara, K., Tatsumi, K.: Syntheses and characterization of titanium(IV) and titanium(III) complexes with (2-dimethylphosphino)ethane-1-thiolate and (3-dimethylphosphino)propane-1-thiolate as ligands. Inorg. Chem. 42, 5320–5329 (2003)

    Article  CAS  Google Scholar 

  6. White, G.S., Stephan, D.W.: Synthesis and crystal and molecular structure of [(C5H5)2Ti(SCH2CH2P(C6H5)2)2Cu]BF4: a heterobimetallic species with a copper to titanium dative bond. Inorg. Chem. 24, 1499–1503 (1985)

    Article  CAS  Google Scholar 

  7. White, G.S., Stephan, D.W.: Synthesis and structural studies of titanium–rhodium heterobimetallic complexes. Characterization and electrochemistry of the redox partners [Cp2Ti(SCH2CH2CH2PPh2)2Rh]BF4 and [Cp2Ti(SCH2CH2CH2PPh2)2Rh]0. Organometallics 6, 2169–2175 (1987)

    Article  CAS  Google Scholar 

  8. Liu, H.Y., Eriks, K., Prock, A., Giering, W.P.: Quantitative analysis of ligand effects (QALE). Systematic study of iron–phosphorus bond lengths and their relationship to steric thresholds. Organometallics 9, 1758–1766 (1990)

    Article  CAS  Google Scholar 

  9. Rahman, M.M., Liu, H.Y., Eriks, K., Prock, A., Giering, W.P.: Quantitative analysis of ligand effects. Part 3. Separation of phosphorus(III) ligands into pure σ-donors and σ-donor/π-acceptors. Comparison of basicity and σ-donicity. Organometallics 8, 1–7 (1989)

    Article  CAS  Google Scholar 

  10. Iwatsuki, S., Suzuki, T., Hasegawa, A., Funahashi, S., Kashiwabara, K., Takagi, H.D.: Preparation, crystal structures and isomerization kinetics of cis- and trans-[Co(dtc)2(PHPh2)2]+: thermodynamically and kinetically stable cobalt(III)–P bonds through interplay of σ-donicity, π-acidity, and steric bulkiness. J. Chem. Soc. Dalton Trans. 2002, 3593–3602 (2002)

    Article  Google Scholar 

  11. Iwatsuki, S., Kashiwamura, S., Kashiwabara, K., Suzuki, T., Takagi, H.D.: Syntheses, crystal structures and isomerization kinetics of a series of [Co(dtc)2{P(OMe)3−n Ph n }2]+ (n = 0–2) complexes (dtc = N,N-dimethyldithiocarbamate): Role of σ-donicity, π-acidity, and cone angle of the P-ligands in the trans influence and trans effect. Dalton Trans. 2280–2292 (2003)

  12. Ando, T., Kita, M., Kashiwabara, K., Fujita, J., Kurachi, S., Ohba, S.: Preparation and characterization of cobalt(III) complexes containing 1,1,1-tris(dimethylphosphinomethyl)ethane (mmtp), and the crystal structure of [Co(mmtp)2][Co(CN)6]·2.25H2O. Bull. Chem. Soc. Jpn. 65, 2748–2755 (1992)

    Article  CAS  Google Scholar 

  13. Iwatsuki, S., Obeyama, K., Koshino, N., Funahashi, S., Kashiwabara, K., Suzuki, T., Takagi, H.D.: New low-spin Co(II) complexes with novel tripodal 1,1,1-tris(dimethylphosphinomethyl)ethane ligand: electron transfer kinetics and spectroscopic characterization of Co(II)P6 and Co(II)P3S3 ions in aqueous solution. Can. J. Chem. 79, 1344–1351 (2001)

    Article  CAS  Google Scholar 

  14. Koyama, H., Yoshino, T.: Syntheses of some medium sized cyclic triamines and their cobalt(III) complexes. Bull. Chem. Soc. Jpn. 45, 481–484 (1972)

    Article  CAS  Google Scholar 

  15. Wieghardt, K., Schmidt, W., Herrmann, W., Kueppers, H.J.: Redox potentials of bis(1,4,7-triazacyclononane) complexes of some first transition series metals (II, III). Preparation of bis(1,4,7-triazacyclononane)nickel(III) perchlorate. Inorg. Chem. 22, 2953–2956 (1983)

    Article  CAS  Google Scholar 

  16. Orpen, A.G., Connelly, N.G.: Structural evidence for the participation of P–X σ* orbitals in metal–PX3 bonding. J. Chem. Soc., Chem. Commun., 1310–1311 (1985)

  17. Pacchioni, G., Bagus, P.S.: Metal-phosphine bonding revisited. σ-basicity, π-acidity, and the role of phosphorus d orbitals in zerovalent metal–phospine complexes. Inorg. Chem. 31, 4391–4398 (1992)

    Article  CAS  Google Scholar 

  18. Parr, R.G., Ayers, P.W., Nalewajski, R.F.: What is an atom in a molecule? J. Phys. Chem. A 109, 3957–3959 (2005)

    Article  CAS  Google Scholar 

  19. Batter, S.A., Chatt, J.: Ethylenebis(dimethylphosphine)[1,2-bis(dimethylphosphino)ethane], tetramethyldiphosphane disulfide, and tetramethyldiphosphane. J. Inorg. Synth. 15, 185–191 (1974)

    Google Scholar 

  20. North, A.C.T., Phillips, D.C., Mathews, F.S.: A semi-empirical method of absorption correction. Acta Cryst. A24, 351–359 (1968)

    Article  Google Scholar 

  21. Sheldrich, G.M.: SHELXS97 and SHELXL97. University of Göttingen, Göttingen (1997)

    Google Scholar 

  22. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Buria, M.C., Polidori, G., Camalli, M.: SIRPOW.92–a program for automatic solution of crystal structures by direct methods optimized for powder data. J. Appl. Cryst. 27, 435–436 (1994)

    Google Scholar 

  23. Molecular Structure Corporation and Rigaku Co. Ltd.: TeXsan, Single crystal structure analysis software, v. 1.11. The Woodlands, TX, USA and Akishima, Tokyo, Japan (2000)

  24. Boeyens, J.C.A., Forbes, A., Hancock, R.D., Wieghardt, K.: Crystallographic study of the low-spin iron(II) and iron(III) bis complexes of 1,4,7-triazacyclononane. Inorg. Chem. 24, 2926–2931 (1985)

    Article  CAS  Google Scholar 

  25. Batten, S.R., Murray, K.S., Sinclair, N.J.: Tris(2,2′-bipyridyl-N,N′)iron(II) diperchlorate. Acta Cryst. C56, e320 (2000)

    CAS  Google Scholar 

  26. Lever, A.B.P.: Inorganic Electronic Spectroscopy, 2nd edn. Elsevier, Amsterdam (1984)

    Google Scholar 

  27. Figgis, B.N., Hitchman, M.A.: Ligand Field Theory and Its Applications. Wiley, New York (2000)

    Google Scholar 

  28. Smith, R.M., Martell, A.E.: Critical Stability Constants. Plenum Press, New York (1975)

    Book  Google Scholar 

  29. Latter, R.: Atomic energy levels for the Thomas–Fermi and Thomas–Fermi–Dirac potential. Phys. Rev. 99, 510–519 (1955)

    Article  CAS  Google Scholar 

  30. Reilley, C.N., Evilia, R.F., Young, D.C.: Contact shift studies of nickel–butylenediamine complexes. Inorg. Chem. 10, 433–440 (1971)

    Article  CAS  Google Scholar 

  31. Basolo, F., Hayes, J.C., Neumann, H.M.: Mechanism of racemization of complex ions. II. Kinetics of the dissociation and racemization of tris-(1,10-phenanthroline)-iron(II) and tris-(2,2′-dipyridyl)-iron(II) complexes. J. Am. Chem. Soc. 76, 3807–3809 (1954)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo D. Takagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mabe, T., Yamaguchi, H., Fujiki, M. et al. Syntheses, Crystal Structures and Ligand Field Properties of Iron(II) Complexes with PNP Ligands: Origin of Large Ligand Field by a Phosphorous Donor Atom. J Solution Chem 43, 1574–1587 (2014). https://doi.org/10.1007/s10953-014-0182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0182-3

Keywords

Navigation