Skip to main content
Log in

The Reactivity of vic-dioximes Towards the [(H2O)(tap)2RuORu(tap)2(H2O)]2+ Ion {tap = 2-(m-tolylazo)pyridine} at Physiological pH

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Kinetics of aqua ligand substitution from [(H2O)(tap)2RuORu(tap)2(H2O)]2+ {tap = 2-(m-tolylazo)pyridine}, by three vicinal dioximes, namely dimethylglyoxime (L1H), 1,2-cyclohexanedione dioxime (L2H) and α-furil dioxime (L3H), have been studied spectrophotometrically in the 35–50 °C temperature range. The reaction was monitored at 560 nm where the absorbance between the reactant and product is at a maximum. At pH 7.4, the reaction has been found to proceed via two distinct consecutive steps, i.e., it shows a non-linear dependence on the concentration of ligands: the first process is [ligand] dependent but the second step is [ligand] independent. The rate constants for the processes are: k 1 ~ 10−3 s−1 and k 2 ~ 10−4 s−1. The activation parameters, calculated from Eyring plots, suggest an associative mechanism for the interaction process. From the temperature dependence of the outer sphere association equilibrium constants, the thermodynamic parameters were also calculated, which give negative ΔG° values at all temperatures studied, supporting the spontaneous formation of an outer sphere association complex. The product of the reaction has been characterized with the help of IR and ESI-mass spectroscopic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chakravorty, A.: Structural chemistry of transition metal complexes of oximes. Coord. Chem. Rev. 13, 1–46 (1974)

    Article  CAS  Google Scholar 

  2. Kuse, S., Motomizu, S., Toei, K.: o-Diketonedioxime compounds as analytical reagents for the spectrophotometric determination of nickel. Anal. Chim. Acta 70, 65–76 (1974)

    Article  CAS  Google Scholar 

  3. Kirschenbaum, L.J., Panda, R.K., Borish, E.T., Mentasti, E.: Vicinal-dioximate complexes of silver(III). Inorg. Chem. 28, 3623–3628 (1989)

    Article  CAS  Google Scholar 

  4. Hughes, M.N.: The Inorganic Chemistry of Biological Processes, 2nd edn. Wiley, New York (1981)

    Google Scholar 

  5. Ozcan, E., Mirzaŏglu, R.: Synthesis of four new substituted arylaminoglyoximes and their complexes with copper(II), nickel(II), cobalt(II), and palladium(II). Synth. React. Inorg. Met. Org. Chem. 18, 559–574 (1988)

    Article  CAS  Google Scholar 

  6. Lance, K.A., Goldsby, K.A., Busch, D.H.: Effective new cobalt(II) dioxygen carriers derived from dimethylglyoxime by the replacement of the linking protons with difluoroboron(1+). Inorg. Chem. 29, 4537–4544 (1990)

    Article  CAS  Google Scholar 

  7. Erkkila, K.E., Odom, D.T., Barton, J.K.: Recognition and reaction of etallointercalators with DNA. Chem. Rev. 99, 2777–2796 (1999)

    Article  CAS  Google Scholar 

  8. Sigman, D.S., Mazumder, A., Perrin, D.M.: Chemical nucleases. Chem. Rev. 93, 2295–2316 (1993)

    Article  CAS  Google Scholar 

  9. Eriksson, M., Leijon, M., Hiort, C., Norden, B., Graslund, A.: Binding of δ- and λ-[Ru(phen)3]2+ to [d(CGCGATCGCG)]2 studied by NMR. Biochemistry 33, 5031–5041 (1994)

    Article  CAS  Google Scholar 

  10. Hudson, B.P., Dupureur, C.M., Barton, J.K.: 1H NMR structural evidence for the sequence-specific design of an intercalator: δ-α-[Rh[(R, R)-Me2trien]phi]3+ bound to d(GAGTGCACTC)2. J. Am. Chem. Soc. 117, 9379–9380 (1995)

    Article  CAS  Google Scholar 

  11. Terbrueggen, R.H., Barton, J.K.: Sequence-specific DNA binding by a rhodium complex: recognition based on sequence-dependent twistability. Biochemistry 34, 8227–8234 (1995)

    Article  CAS  Google Scholar 

  12. Lecomte, J.P., Kirsch-De Mesmaeker, A., Kelly, J.: Photoreactions of model complexes with DNA especially those involving a primary photo-electron transfer. Top. Curr. Chem. 177, 25–76 (1996)

    Article  Google Scholar 

  13. Lincoln, P., Norden, B.: DNA binding geometries of ruthenium(II) complexes with 1,10-phenanthroline and 2,2′-bipyridine ligands studied with linear dichroism spectroscopy. Borderline cases of intercalation. J. Phys. Chem. B. 102, 9583–9594 (1998)

    Article  CAS  Google Scholar 

  14. Barton, J.K.: Metals and DNA: molecular left-handed complements. Science 233, 727–734 (1986)

    Article  CAS  Google Scholar 

  15. Barton, J.K., Dannenberg, J.J., Raphael, A.L.: Enantiomeric selectivity in binding tris(phenanthroline)zinc(II) to DNA. J. Am. Chem. Soc. 104, 4967–4969 (1982)

    Article  CAS  Google Scholar 

  16. Barton, J.K., Danishefsky, A.T., Goldberg, J.M.: Tris(phenanthroline)ruthenium(II): stereoselectivity in binding to DNA. J. Am. Chem. Soc. 106, 2172–2176 (1984)

    Article  CAS  Google Scholar 

  17. Barton, J.K., Raphael, A.L.: Site-specific cleavage of left-handed DNA in pBR322 by lambda-tris(diphenylphenanthroline)cobalt(III). Proc. Acad. Sci. USA 82, 6460–6464 (1985)

    Article  CAS  Google Scholar 

  18. Kumar, C.V., Barton, J.K., Turro, N.J.: Photophysics of ruthenium complexes bound to double helical DNA. J. Am. Chem. Soc. 107, 5518–5523 (1985)

    Article  CAS  Google Scholar 

  19. Das, T., Bera, B.K., Datta, A.K., Ghosh, A.K.: Kinetic and mechanistic studies on the substitution of aqua ligands from cis-diaqua-bis-(bypyridyl)-ruthenium(II) ion by vicinal-dioximes. Transit. Met. Chem. 34, 247–253 (2009)

    Article  CAS  Google Scholar 

  20. Ghosh, B.K., Chakravorty, A.: Electrochemical studies of ruthenium compounds part I. Ligand oxidation levels. Coord. Chem. Rev. 95, 239–294 (1989)

    Article  CAS  Google Scholar 

  21. Goswami, S., Chakraborty, A.R., Chakravorty, A.: Chemistry of ruthenium. 2. Synthesis, structure, and redox properties of 2-(arylazo)pyridine complexes. Inorg. Chem. 20, 2246–2250 (1981)

    Article  CAS  Google Scholar 

  22. Goswami, S., Chakraborty, A.R., Chakravorty, A.: Chemistry of ruthenium. 7. Aqua complexes of isomeric bis[(2-arylazo)pyridine]ruthenium(II) moieties and their reactions: solvolysis, protic equilibriums, and electrochemistry. Inorg. Chem. 22, 602–609 (1983)

    Article  CAS  Google Scholar 

  23. Mercer, E.E., McAllister, W.A., Durig, J.R.: An infrared study of the directive influences by ligands in nitrosylruthenium complexes. Inorg. Chem. 5, 1881 (1966)

    Article  CAS  Google Scholar 

  24. Weyh, J.A., Hamm, R.E.: Aquation of the cis-bis(iminodiacetato)chromate(III) and trans(fac)-bis(methyliminodiacetato)chromate(III) ions in acidic aqueous medium. Inorg. Chem. 8, 2298–2302 (1969)

    Article  CAS  Google Scholar 

  25. Sillen, L.G., Martell, A.E.: Stability Constants of Metal ion Complexes. Special Publication No. 17. The Chemical Society, London (1964)

  26. Mahanti, B., De, G.S.: Kinetic and mechanistic studies on the substitution of aqua ligands from cis-diaqua-bis-(bypyridyl)-ruthenium(II) ion by salicylhydroxamic acid in aqueous medium. Transit. Met. Chem. 17, 521–524 (1992)

    Article  CAS  Google Scholar 

  27. Raven, S.J., Meyer, T.J.: Reactivity of the oxo-bridged ion µ-oxobis[bis(2,2′-bipyridine)dioxodiruthenium](3+). Inorg. Chem. 27, 4478–4479 (1988)

    Article  CAS  Google Scholar 

  28. Kutner, W., Gilbert, J.A., Tomaszewski, A., Meyer, T.J., Murray, R.W.: Stability and electrocatalytic activity of the oxo-bridged dimer [(bpy)2(H2O)RuORu(OH2)(bpy)2]4+ in basic solutions. J. Electroanal. Chem. 205, 185–207 (1986)

    Article  CAS  Google Scholar 

  29. Gersten, S.W., Samuels, G.J., Meyer, T.J.: Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J. Am. Chem. Soc. 104, 4029–4030 (1982)

    Article  CAS  Google Scholar 

  30. Ghosh, P., Chakravorty, A.: Hydroxamates of bis(2,2′-bipyridine)ruthenium: synthesis, protic, redox, and electroprotic equilibria, spectra, and spectroelectrochemical correlations. Inorg. Chem. 23, 2242–2248 (1984)

    Article  CAS  Google Scholar 

  31. Cotton, F.A., Wilkinson, G., Murrilo, C.A., Bochman, M.: Advanced Inorganic Chemistry, 6th edn. Wiley, New York (1999)

    Google Scholar 

  32. Gilbert, J.A., Eggleston, D.S., Murphy Jr, W.R., Geselowitz, D.A., Gersten, S.W., Hodgson, D.J., Meyer, T.J.: Structure and redox properties of the water-oxidation catalyst [(bpy)2(OH2)RuORu(OH2)(bpy)2]4+. J. Am. Chem. Soc. 107, 3855–3864 (1985)

    Article  CAS  Google Scholar 

  33. Gilbert, J.A., Geselowitz, D., Meyer, T.J.: Redox properties of the oxo-bridged osmium dimer [(bpy)2(OH2)OsIIIOOsIV(OH)(bpy)2]4+. Implications for the oxidation of water to oxygen. J. Am. Chem. Soc. 108, 1493–1501 (1986)

    Article  CAS  Google Scholar 

  34. Mandal, A., Mondal, S., Karmakar, P., Mallick, S., Bera, B.K., Ghosh, A.K.: Mechanistic aspects of ligand substitution on [(H2O)(tap)2RuORu(tap)2(H2O)]2+ ion tap = 2-(m-tolylazo)pyridine by some amino acids in aqueous medium at physiological pH. Int. J. Chem. Kinet. 44, 612–623 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alak K. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Ray, S., Chattopadhyay, A. et al. The Reactivity of vic-dioximes Towards the [(H2O)(tap)2RuORu(tap)2(H2O)]2+ Ion {tap = 2-(m-tolylazo)pyridine} at Physiological pH. J Solution Chem 43, 870–884 (2014). https://doi.org/10.1007/s10953-014-0178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0178-z

Keywords

Navigation