Skip to main content
Log in

Solubility and Solution Thermodynamics of Some Sulfonamides in 1-Propanol + Water Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubilities of sulfadiazine (SD), sulfamerazine (SMR) and sulfamethazine (SMT) in some 1-propanol + water co-solvent mixtures were measured at five temperatures from 293.15 to 313.15 K over the polarity range provided by the aqueous solvent mixtures. The mole fraction solubility of all these sulfonamides was maximal in the 0.80 mass fraction of 1-propanol solvent mixture (δ solv = 28.3 MPa1/2) and minimal in water (δ = 47.8 MPa1/2) at all temperatures studied. The apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution were obtained from these solubility data by using the van’t Hoff and Gibbs equations. Apparent thermodynamic quantities of mixing were also calculated by using the ideal solubilities reported in the literature. Nonlinear enthalpy–entropy relationships were observed for these drugs in the plots of enthalpy versus Gibbs energy of mixing. The plot of ∆mix H° versus ∆mix G° shows different trends according to the slopes obtained when the mixture compositions change. Accordingly, the mechanism for the solution process of SD and SMT in water-rich mixtures is enthalpy driven, whereas it is entropy driven for SMR. In a different way, in 1-propanol-rich mixtures the mechanism is enthalpy driven for SD and SMR and entropy driven for SMT. Ultimately, in almost all of the intermediate compositions, the mechanism is enthalpy driven. Nevertheless, the molecular events involved in the solution processes remain unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rubino, J.T.: Cosolvents and cosolvency. In: Swarbrick, J., Boylan, J.C. (eds.) Encyclopedia of Pharmaceutical Technology, vol. 3. Marcel Dekker, New York (1988)

    Google Scholar 

  2. Yalkowsky, S.H.: Solubility and Solubilization in Aqueous Media. American Chemical Society and Oxford University Press, New York (1999)

    Google Scholar 

  3. Avdeef, A.: Absorption and Drug Development, Solubility, Permeability and Charge State. Wiley-Interscience, Hoboken (2003)

    Google Scholar 

  4. Pacheco, D.P., Martínez, F.: Thermodynamic analysis of the solubility of naproxen in ethanol + water cosolvent mixtures. Phys. Chem. Liq. 45, 581–595 (2007)

    Article  CAS  Google Scholar 

  5. Gelone, S., O’Donell, J.A.: Anti-infectives. In: Gennaro, A.R. (ed.) Remington: The Science and Practice of Pharmacy, 21st edn. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  6. Jouyban, A.: Handbook of Solubility Data for Pharmaceuticals. CRC Press, Boca Raton (2010)

    Google Scholar 

  7. Jouyban, A.: Review of the cosolvency models for predicting solubility of drugs in water–cosolvent mixtures. J. Pharm. Pharmaceut. Sci. 11, 32–58 (2008)

    CAS  Google Scholar 

  8. Yalkowsky, S.H., He, Y.: Handbook of Aqueous Solubility Data. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  9. Budavari, S., O’Neil, M.J., Smith, A., Heckelman, P.E., Obenchain Jr, J.R., Gallipeau, J.A.R., D’Arecea, M.A.: The Merck Index, An Encyclopedia of Chemicals, Drugs, and Biologicals, 13th edn. Merck, Whitehouse Station (2001)

    Google Scholar 

  10. Elworthy, P.H., Worthington, E.C.: The solubility of sulphadiazine in water–dimethylformamide mixtures. J. Pharm. Pharmacol. 20, 830–835 (1968)

    Article  CAS  Google Scholar 

  11. Bustamante, P., Escalera, B., Martin, A., Selles, E.: A modification of the extended Hildebrand approach to predict the solubility of structurally related drugs in solvent mixtures. J. Pharm. Pharmacol. 45, 253–257 (1993)

    Article  CAS  Google Scholar 

  12. Perlovich, G.L., Ryzhakov, A.M., Strakhova, N.N., Kazachenko, V.P., Schaper, K.-J., Raevsky, O.A.: Thermodynamic aspects of solubility and partitioning processes of some sulfonamides in the solvents modeling biological media. J. Chem. Thermodyn. 69, 56–65 (2014)

    Article  CAS  Google Scholar 

  13. Marcus, Y.: The Properties of Solvents. John Wiley & Sons, Chichester (1998)

    Google Scholar 

  14. Delgado, D.R., Romdhani, A., Martínez, F.: Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures. Lat. Am. J. Pharm. 30, 2024–2030 (2011)

    CAS  Google Scholar 

  15. Delgado, D.R., Romdhani, A., Martínez, F.: Solubility of sulfamethizole in some propylene glycol + water mixtures at several temperatures. Fluid Phase Equilib. 322, 113–119 (2012)

    Article  Google Scholar 

  16. Delgado, D.R., Rodríguez, G.A., Holguín, A.R., Martínez, F., Jouyban, A.: Solubility of sulfapyridine in propylene glycol + water mixtures and correlation with the Jouyban–Acree model. Fluid Phase Equilib. 341, 86–95 (2013)

    Article  CAS  Google Scholar 

  17. Delgado, D.R., Rodríguez, G.A., Martínez, F.: Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures. J. Mol. Liq. 177, 156–161 (2013)

    Article  CAS  Google Scholar 

  18. Delgado, D.R., Martínez, F.: Solution thermodynamics of sulfadiazine in ethanol + water mixtures. J. Mol. Liq. 187, 99–105 (2013)

    Article  CAS  Google Scholar 

  19. Delgado, D.R., Martínez, F.: Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures. Fluid Phase Equilib. 360, 88–96 (2013)

    Article  CAS  Google Scholar 

  20. Rodríguez, S.J., Cristancho, D.M., Neita, P.C., Vargas, E.F., Martínez, F.: Volumetric properties of the octyl methoxycinnamate + ethyl acetate solvent system at several temperatures. Phys. Chem. Liq. 48, 638–647 (2010)

    Article  Google Scholar 

  21. Martin, A.N., Bustamante, P., Chun, A.H.C.: Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences, 4th edn. Lea & Febiger, Philadelphia (1993)

    Google Scholar 

  22. Zhang, C.-L., Li, B.-Y., Wang, Y.: Solubilities of sulfadiazine in methanol, ethanol, 1-1-propanol, 2-1-propanol, acetone, and chloroform from (294.15 to 318.15) K. J. Chem. Eng. Data 55, 2338–2339 (2010)

    Article  CAS  Google Scholar 

  23. Zhang, C.-L., Zhao, F., Wang, Y.: Thermodynamics of the solubility of sulfamethazine in methanol, ethanol, 1-propanol, acetone, and chloroform from 293.15 to 333.15 K. J. Mol. Liq. 159, 170–172 (2011)

    Article  CAS  Google Scholar 

  24. Hansen, C.M.: Hansen Solubility Parameters, 2nd edn. Taylor & Francis Group, Boca Raton (2007)

    Book  Google Scholar 

  25. Barton, A.: Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd edn. CRC Press, New York (1991)

    Google Scholar 

  26. Connors, K.A.: Thermodynamics of Pharmaceutical Systems. Wiley Interscience, Hoboken (2002)

    Book  Google Scholar 

  27. Fedors, R.F.: A method for estimating both the solubility parameters and molar volumes of liquids. Polym. Eng. Sci. 14, 147–154 (1974)

    Article  CAS  Google Scholar 

  28. Kristl, A., Vesnaver, G.: Thermodynamic investigation of the effect of octanol–water mutual miscibility on the partitioning and solubility of some guanine derivatives. J. Chem. Soc. Faraday Trans. 91, 995–998 (1995)

    Article  CAS  Google Scholar 

  29. Krug, R.R., Hunter, W.G., Grieger, R.A.: Enthalpy–entropy compensation. 2. Separation of the chemical from the statistical effects. J. Phys. Chem. 80, 2341–2351 (1976)

    Article  CAS  Google Scholar 

  30. Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw–Hill Book, Co., New York (1969)

    Google Scholar 

  31. Barrante, J.R.: Applied Mathematics for Physical Chemistry, 2nd edn. Prentice Hall Inc, Upper Saddle River (1998)

    Google Scholar 

  32. Perlovich, G.L., Kurkov, S.V., Kinchin, A.N., Bauer-Brandl, A.: Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs. Eur. J. Pharm. Biopharm. 57, 411–420 (2004)

    Article  CAS  Google Scholar 

  33. Romero, S., Reillo, A., Escalera, B., Bustamante, P.: The behaviour of paracetamol in mixtures of aprotic and amphiprotic-aprotic solvents. Relationship of solubility curves to specific and nonspecific interactions. Chem. Pharm. Bull. 44, 1061–1066 (1996)

    Article  CAS  Google Scholar 

  34. Holguín, A.R., Delgado, D.R., Martínez, F., Marcus, Y.: Solution thermodynamics and preferential solvation of meloxicam in propylene glycol + water mixtures. J. Solution Chem. 40, 1987–1999 (2011)

    Article  Google Scholar 

  35. Bustamante, P., Romero, S., Peña, A., Escalera, B., Reillo, A.: Nonlinear enthalpy–entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide and nalidixic acid in dioxane–water. J. Pharm. Sci. 87, 1590–1596 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Pharmacy of the National University of Colombia for facilitating us the equipment and laboratories used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fleming Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, D.R., Martínez, F. Solubility and Solution Thermodynamics of Some Sulfonamides in 1-Propanol + Water Mixtures. J Solution Chem 43, 836–852 (2014). https://doi.org/10.1007/s10953-014-0169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0169-0

Keywords

Navigation