Skip to main content
Log in

Effect of Cosolvent on Bulk and Interfacial Characteristics of Imidazolium Based Room Temperature Ionic Liquids

Impact of Cosolvent on Physciochemical Characteristics of Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Here we report a systematic study on electrical conductivity and surface tension of various concentrated solutions of imidazolium based room temperature ionic liquids (RTILs), viz. 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][\(\hbox {PF}_{6}\)]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][\(\hbox {BF}_{4}\)]) in the cosolvents methanol and acetonitrile at 298.15 K. The aim of the investigations was to explore the impact of cosolvents on bulk and interfacial characteristics of imidazolium based RTILs. It was observed that both methanol and acetonitrile mix non-ideally with and enhance the transport parameters of the imidazolium based RTILs. An interesting outcome of the presented work is that the investigated RTILs retain their inherent structural characteristics up to a high dilution limit with cosolvent, and this limit is higher in acetonitrile than in methanol as cosolvent. The findings establish that, in comparison to methanol, acetonitrile is a better cosolvent that can be used for enhancing the transport parameters of imidazolium based RTILs for electrochemical and other applications. The results are explained in light of structure-composition-property relations and ion-ion and ion-cosolvent interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis. Wiley, Weinheim (2003)

    Google Scholar 

  2. Welton, T.: Room temperature ionic liquids-solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999)

    Article  CAS  Google Scholar 

  3. Hapiot, P., Lagrost, C.: Electrochemical reactivity in room temperature ionic liquids. Chem. Rev. 108, 2238–2264 (2008)

    Article  CAS  Google Scholar 

  4. Lu, X., Burrell, G., Separovic, F., Zhao, C.: Electrochemistry of room temperature protic ionic liquids: a critical assessment for use as electrolytes in electrochemical applications. J. Phys. Chem. B 116, 9160–9170 (2012)

    Article  CAS  Google Scholar 

  5. Liu, W., Ye, C., Gong, Q., Wang, H., Wang, P.: Tribological performance of room-temperature ionic liquids as lubricant. Tribol. Lett. 13, 81–85 (2002)

    Article  CAS  Google Scholar 

  6. Harris, K.R., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J. Chem. Eng. Data 50, 1777–1782 (2005)

    Article  CAS  Google Scholar 

  7. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 52, 2425–2430 (2007)

    Article  CAS  Google Scholar 

  8. Jacquemin, J., Ge, R., Nancarrow, P., Rooney, D.W., Gomes, M.F.C., Padua, A.A.H., Hardacare, C.: Prediction of ionic liquid properties. I. Volumetric properties as a function of temperature at 0.1 MPa. J. Chem. Eng. Data 53, 716–726 (2008)

    Article  CAS  Google Scholar 

  9. Hayamizu, K., Aihara, Y., Nakagawa, H., Nukada, T., Price, W.S.: Ionic conduction and ion diffusion in binary room temperature ionic liquids composed of [emim][\(\text{BF}_{4}\)] and Li\(\text{BF}_{4}\). J. Phys. Chem. B 108, 19527–19532 (2004)

    Article  CAS  Google Scholar 

  10. Nicotera, I., Oliviera, C., Henderson, W.A., Appetecchi, G.B., Passerini, S.J.: NMR investigation of ionic liquid-LiX mixtures: pyrrolidinium cations and TFSI- anions. J. Phys. Chem. B 109, 22814–22819 (2005)

    Article  CAS  Google Scholar 

  11. Li, W., Zhang, Z., Han, B., Hu, S., Xie, Y., Yang, G.: Effect of water and organic solvents on the ionic dissociation of ionic liquids. J. Phys. Chem. B 111, 6452–6456 (2007)

    Article  CAS  Google Scholar 

  12. Gericke, M., Liebert, T., Seoud, O.A.E., Heinze, T.: Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol. Mater. Eng. 296, 483–493 (2011)

    Article  CAS  Google Scholar 

  13. Sarkar, A., Trivedi, S., Pandey, S.: Unusual solvatochromism within 1-butyl-3-methylimidazolium hexafluorophosphate + poly(ethylene glycol) mixtures. J. Phys. Chem. B 112, 9042–9049 (2008)

    Article  CAS  Google Scholar 

  14. Sarkar, A., Trivedi, S., Pandey, S.: Polymer molecular weight-dependent unusual fluorescence probe behavior within 1-butyl-3-methylimidazolium hexafluorophosphate + poly(ethylene glycol). J. Phys. Chem. B 113, 7606–7614 (2009)

    Article  CAS  Google Scholar 

  15. Trivedi, S., Malek, N.I., Behera, K., Pandey, S.: Temperature-dependent solvatochromic probe behavior within ionic liquids and (ionic liquid + water) mixtures. J. Phys. Chem. B 114, 8118–8125 (2010)

    Article  CAS  Google Scholar 

  16. Chaban, V.V., Prezhdo, O.V.: Ionic and molecular liquids: working together for robust engineering. J. Phys. Chem. Lett. 4, 1423–1431 (2013)

    Article  CAS  Google Scholar 

  17. Chaban, V.V., Prezhdo, O.V.: How toxic are ionic liquid/acetonitrile mixtures? J. Phys. Chem. Lett. 2, 2499–2503 (2011)

    Article  CAS  Google Scholar 

  18. Zhang, S.J., Li, X., Chen, H.P., Wang, J.F., Zhang, J.M., Zhang, M.L.: Determination of physical properties for the binary system of 1-ethyl-3-methylimidazolium tetrafluoroborate + \(\text{H}_{2}\text{O}\). J. Chem. Eng. Data 49, 760–764 (2004)

    Article  CAS  Google Scholar 

  19. Jan, R., Rather, G.M., Bhat, M.A.: 15. Association of ionic liquids in solution: conductivity studies of [BMIM][Cl] and [BMIM][\(\text{PF}_{6}\)] in binary mixtures of acetonitrile + methanol. J. Solution Chem. 42, 738–745 (2013)

    Article  CAS  Google Scholar 

  20. Zhou, Q., Wang, L.S., Chen, H.P.: Densities and viscosities of 1-butyl-3-methylimidazolium tetrafluoroborate + \(\text{H}_{2}\text{O}\) binary mixtures from (303.15 to 353.15) K. J. Chem. Eng. Data 51, 905–908 (2006)

    Article  CAS  Google Scholar 

  21. Herzig, T., Schreiner, C., Bruglachner, H., Jordan, S., Schmidt, M., Gores, H.J.: Temperature and concentration dependence of conductivities of some new semichelatoborates in acetonitrile and comparison with other borates. J. Chem. Eng. Data 53, 434–438 (2008)

    Article  CAS  Google Scholar 

  22. Domanska, U., Pobudkowska, A., Wisniewska, A.: Solubility and excess molar properties of 1,3-dimethylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium octylsulfate ionic liquids with \(n\)-alkanes and alcohols: analysis in terms of the PFP and FBT models. J. Solution Chem. 35, 311–334 (2006)

    Article  CAS  Google Scholar 

  23. Ge, M.L., Ren, X.G., Song, Y.J., Wang, L.S.: Densities and viscosities of 1-propyl-2,3-dimethylimidazolium tetrafluoroborate + \(\text{H}_{2}\text{O}\) at \(T\) = (298.15 to 343.15) K. J. Chem. Eng. Data 54, 1400–1402 (2009)

    Article  CAS  Google Scholar 

  24. Domanska, U., Laskowska, M.: Temperature and composition dependence of the density and viscosity of binary mixtures of 1-butyl-3-methylimidazolium thiocyanate + 1-alcohols. J. Chem. Eng. Data 54, 2113–2119 (2009)

    Article  CAS  Google Scholar 

  25. Bhat, M.A., Dutta, C.K., Rather, G.M.: Exploring physicochemical aspects of N-Nalkylimidazolium. J. Mol. Liq. 181, 142–151 (2013)

    Article  CAS  Google Scholar 

  26. Dupont, J., Consorti, C.S., Saurez, P.A.Z., deSouza, R.F.: Preparation of 1-butyl-3-methylimidazolium-based room temperature ionic liquids. Org. Synth. 79, 236–243 (2002)

    Article  CAS  Google Scholar 

  27. Bhat, M.A., Chaudhari, V.R., Ingole, P.P., Haram, S.K.: Outer sphere electroreduction of \(\text{CCl}_{4}\) in 1-butyl-3-methylimidazolium tetrafluoroborate; an example of solvent effects of ionic liquid. J. Phys. Chem. B 113, 2848–2853 (2009)

    Article  CAS  Google Scholar 

  28. Perrin, D.D., Armarego, W.L.F.: Purification of Laboratory Chemicals, 3rd edn. Pregamon Press, London (1998)

    Google Scholar 

  29. Bhat, M.A., Dar, A.A., Rasheed, P.I., Rather, G.M.: Temperature dependence of transport and equilibrium properties of properties of alkylpyridinium surfactants. J. Chem. Thermodyn. 39, 1500–1507 (2007)

    Article  CAS  Google Scholar 

  30. Hunger, J., Stoppa, A., Buchner, R., Hefter, G.: From ionic liquid to electrolyte solution: dynamics of 1-N-butyl-3-N-methylimidazolium tetrafluoroborate/dichloromethane mixtures. J. Phys. Chem. B 112, 12913–12919 (2008)

    Article  CAS  Google Scholar 

  31. Tokuda, H., Baek, S.J., Watanabe, M.: Room temperature ionic liquid-organic solvent mixtures: conductivity and ionic association. Electrochemistry 73, 620–622 (2005)

    CAS  Google Scholar 

  32. Neuder, R., Barthel, J.: Electrolyte Data Collection. DECHEMA Chemistry Data Series, vol. XII. Part1a, Frankfurt (1993)

  33. Gores, H.J., Barthel, J.: Conductance of salts at moderate and high concentrations in propylene carbonate-dimethoxyethane mixtures at temperatures from \(-45\) to \(25\,^{\circ}\text{C}\). J. Solution Chem. 9, 939–954 (1980)

    Article  CAS  Google Scholar 

  34. Chaban, V.V., Prezhdo, O.V.: A new force field model of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and acetonitrile mixtures. Phys. Chem. Chem. Phys. 13, 19345–19354 (2011)

    Article  CAS  Google Scholar 

  35. Kalugin, O.N., Voroshylova, I.V., Riabchunova, A.V., Lukinova, E.V., Chaban, V.V.: Conductometric study of binary systems based on ionic liquids and acetonitrile in a wide concentration range. Electrochim. Acta 105, 188–199 (2013)

    Article  CAS  Google Scholar 

  36. Every, H., Bishop, A.G., Forsyth, M., MacFarlane, D.R.: Ion diffusion in molten salt mixtures. Electrochim. Acta 45, 1279–1284 (2000)

    Article  CAS  Google Scholar 

  37. Wang, J.J., Wang, H.Y., Zhang, S.L., Zhang, H.C., Zhao, Y.: Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids \(\left[\text{C}_{4}\text{mim}][\text{BF}_{4}\right]\) and \(\left[\text{C}_{n}\text{mim}\right]\text{Br}\) (\(n\) = 4, 6, 8, 10, 12) in aqueous solutions. J. Phys. Chem. B 111, 6181–6188 (2007)

    Article  CAS  Google Scholar 

  38. Shi, L.J., Li, N., Yan, H., Gao, Y.A., Zheng, L.Q.: Aggregation behavior of long-chain N-aryl imidazolium bromide in aqueous solution. Langmuir 27, 1618–1625 (2011)

    Article  CAS  Google Scholar 

  39. Dorbritz, S., Ruth, W., Kragl, U.: Investigation on aggregate formation of ionic liquids. Adv. Synth. Catal. 347, 1273–1279 (2005)

    Article  CAS  Google Scholar 

  40. Casteel, J.F., Amis, E.S.: Specific conductance of concentrated solutions of magnesium salts in water-ethanol system. J. Chem. Eng. Data 17, 55–59 (1972)

    Article  CAS  Google Scholar 

  41. Stoppa, A., Hunger, J., Buchner, R.: Conductivities of binary mixtures of ionic liquids with polar solvents. J. Chem. Eng. Data 54, 472–479 (2009)

    Article  Google Scholar 

  42. Lopes, J.N.C., Padua, A.A.H.: Nanostructural organization in ionic liquids. J. Phys. Chem. B 110, 3330–3335 (2006)

    Article  CAS  Google Scholar 

  43. Lopes, J.N.C., Gomes, M.F.C., Padua, A.A.H.: Nonpolar, polar, and associating solutes in ionic liquids. J. Phys. Chem. B 110, 16816–16818 (2006)

    Article  CAS  Google Scholar 

  44. Chaban, V.V., Voroshylova, I.V., Kalugin, O.N., Prezhdo, O.V.: Acetonitrile boosts conductivity of imidazolium ionic liquids. J. Phys. Chem. B 116, 7719–7727 (2012)

    Article  CAS  Google Scholar 

  45. Aliaga, C., Santos, C.S., Baldelli, S.: Surface chemistry of room-temperature ionic liquids. Phys. Chem. Chem. Phys. 9, 3683–3700 (2007)

    Article  CAS  Google Scholar 

  46. Mezger, M., Schrder, H., Reichert, H., Schramm, S., Okasinski, J.S., Schder, S., Honkimki, V., Deutsch, M., Ocko, B.M., Rohwerder, M., Stratmann, M., Dosch, H.: Molecular layering of fluorinated ionic liquids at a charged sapphire(0001) surface. Science 322, 424–428 (2008)

    Article  CAS  Google Scholar 

  47. Lovelock, K.R.J., Kolbeck, C., Cremer, T., Paape, N., Schulz, P.S., Wasserscheid, P., Maier, F., Steinruck, H.P.: Influence of different substituents on the surface composition of ionic liquids studied using ARXPS. J. Phys. Chem. B 113, 2854–2864 (2009)

    Article  CAS  Google Scholar 

  48. Carvalho, P.J., Freire, M.G., MarruchoI, M., Queimada, A.J., Coutinho, J.A.P.: Surface tensions for the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J. Chem. Eng. Data 53, 1346–1350 (2008)

    Article  CAS  Google Scholar 

  49. Endres, F., ElAbedin, S.Z.: Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys. 8, 2101–2116 (2006)

    Article  CAS  Google Scholar 

  50. Domanska, U., Krolikowska, M.: Effect of temperature and composition on the surface tension and thermodynamic properties of binary mixtures of 1-butyl-3-methylimidazolium thiocyanate with alcohols. J. Colloid Interface Sci. 348, 661–667 (2010)

    Article  CAS  Google Scholar 

  51. Adamson, A.W.: Physical Chemistry of Surfaces, 6th edn. Wiley, New York (1997)

    Google Scholar 

  52. Shimizu, K., Gomes, M.F.C., Padua, A.A.H., Rebelo, L.P.N.: Three commentaries on the nano-segregated structure of ionic liquids. J. Mol. Struc. Theor. 946, 70–76 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MAB thanks Department of Science and Technology, New Delhi, India, for the research Grant No. SR/S1/PC-11/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Ahmad Bhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, R., Rather, G.M. & Bhat, M.A. Effect of Cosolvent on Bulk and Interfacial Characteristics of Imidazolium Based Room Temperature Ionic Liquids. J Solution Chem 43, 685–695 (2014). https://doi.org/10.1007/s10953-014-0165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0165-4

Keywords

Navigation