Skip to main content
Log in

Catalytic Behavior of a Series of Cationic Gemini (16-s-16 Type, s = 4, 5, 6) and CTAB Surfactants on the Reaction of Ninhydrin with [Ni(II)–Gly-Phe]+

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The influence of cationic CTAB/gemini surfactants on the reaction of ninhydrin with the nickel–glycylphenylalanine ([Ni(II)–Gly-Phe]+) complex was investigated spectrophotometrically, at 70 °C and pH = 5.0. The kinetics were found to follow a pseudo-first- and fractional-order reaction path with respect to concentrations of [Ni(II)–Gly-Phe]+ complex and ninhydrin, respectively. The values of rate constant (k ψ) increase with increase in CTAB concentration and reach a maximum value, and then, with further increase in the CTAB concentration, a slow decreasing effect is observed. In the case of geminis, k ψ increase and leveling-off regions (just like the monocationic CTAB) are obtained with [geminis], in addition to a third region of increasing k ψ at higher concentrations. On the basis of the observed data a probable mechanism has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Friedman, F.: Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. J. Agric. Food Chem. 52, 385–406 (2004)

    Article  CAS  Google Scholar 

  2. Joullie, M.M., Thompson, T.R., Nemeroff, N.H.: Ninhydrin and ninhydrin analogs. Syntheses and applications. Tetrahedron 47, 8791–8830 (1991)

    Article  CAS  Google Scholar 

  3. Kabir-ud-Din, Salem, J.K.J., Kumar, S., Rafiquee, M.Z.A., Khan, Z.: Effect of cationic micelles on the kinetics of interaction of ninhydrin with l-leucine and l-phenylalanine. J. Colloid Interface Sci. 213, 20–28 (1999)

    Article  CAS  Google Scholar 

  4. Akram, M., Kumar, D., Kabir-ud-Din: Influence of cationic gemini and conventional CTAB on the interaction of [Cr(III)–Gly-Tyr]2+ complex with ninhydrin. Colloids Surf. A 428, 92–99 (2013)

    Article  CAS  Google Scholar 

  5. Pasini, A., Casella, L.: Some aspects of the reactivity of amino acids coordinated to metal ions. J. Inorg. Nucl. Chem. 36, 2133–2144 (1974)

    Article  CAS  Google Scholar 

  6. Rosen, M.J.: Geminis: a new generation of surfactants. ChemTech 23, 30–33 (1993)

    CAS  Google Scholar 

  7. Menger, F.M., Littau, C.A.: Gemini surfactants: a new class of self-assembling molecules. J. Am. Chem. Soc. 115, 10083–10090 (1993)

    Article  CAS  Google Scholar 

  8. Zana, R.: Gemini (dimeric) surfactants. Curr. Opin. Colloid Interface Sci. 1, 566–571 (1996)

    Article  CAS  Google Scholar 

  9. Rosen, M.J., Tracy, D.J.: Gemini surfactants. J. Surfact. Deterg. 1, 547–554 (1998)

    Article  CAS  Google Scholar 

  10. Menger, F.M., Keiper, J.S.: Gemini surfactants. Angew. Chem. Int. Ed. 39, 1906–1920 (2000)

    Article  Google Scholar 

  11. Britton, H.T.S.: Hydrogen Ions, Vol. 1. Chapman and Hall, London (1942)

    Google Scholar 

  12. Kabir-ud-Din, Fatma, W., Khan, Z.A., Dar, A.A.: 1H NMR and viscometric studies on cationic gemini surfactants in presence of aromatic acids and salts. J. Phys. Chem. B 111, 8860–8867 (2007)

    Article  CAS  Google Scholar 

  13. Mukerjee, P., Mysels, K.J.: Critical Micelle Concentrations of Aqueous Surfactant Systems. NSRDS-NBS 36, Washington, DC (1971)

  14. Akram, M., Kumar, D., Kabir-ud-Din: Micelle-catalyzed reaction between ninhydrin and nickel dipeptide complex [Ni(II)–Gly–Tyr]+. Colloids Surf. B 94, 220–225 (2012)

    Article  CAS  Google Scholar 

  15. Akram, M., Kumar, D., Kabir-ud-Din: Effect of dicationic gemini surfactants 16-s-16 (s = 4, 5, 6) on the ninhydrin–dipeptide (glycyl–tyrosine) reaction. Int. J. Chem. Kinet. 44, 800–809 (2012)

    Article  CAS  Google Scholar 

  16. Akram, M., Zaidi, N.H., Kabir-ud-Din: Micellar and salt effects on the interaction of [Cu(II)–Gly–Gly]+ with ninhydrin. Int. J. Chem. Kinet. 39, 556–564 (2007)

    Article  CAS  Google Scholar 

  17. Menger, F.M., Portnoy, C.E.: Chemistry of reactions proceeding inside molecular aggregates. J. Am. Chem. Soc. 89, 4698–4703 (1967)

    Article  CAS  Google Scholar 

  18. Bunton, C.A., Robinson, L.: Micellar effects upon nucleophilic aromatic and aliphatic substitution. J. Am. Chem. Soc. 90, 5972–5979 (1968)

    Article  CAS  Google Scholar 

  19. Bunton, C.A.: Reaction kinetics in aqueous surfactant solutions. Catal. Rev. Sci. Eng. 20, 1–56 (1979)

    Article  CAS  Google Scholar 

  20. Bunton, C.A.: Reactivity in aqueous association colloids. Descriptive utility of the pseudophase model. J. Mol. Liq. 72, 231–249 (1997)

    Article  CAS  Google Scholar 

  21. Khan, M.N.: Micellar Catalysis: Surfactant Science Series, Vol. 133. CRC Press, New York (2006)

    Book  Google Scholar 

  22. Romsted, L.S.: Micellar effects on reaction rates and equilibria. In: Mittal, K.L., Lindman, B. (eds.) Surfactants in Solution, vol. 2. Plenum Press, New York (1984)

    Google Scholar 

  23. Savelli, G., Germani, R., Brinchi, L.: Reactivity control by aqueous. In: Texter, J. (ed.) Reactions and Synthesis in Surfactant Systems, Surfactant Science Series, vol. 100. Marcel Dekker, New York (2001)

    Google Scholar 

  24. Romsted, L.S.: Surfactants in solution. In: Mittal, K.L. (ed.) Micellization, Solubilization, and Microemulsions, vol. 2. Plenum Press, New York (1977)

    Google Scholar 

  25. Bunton, C.A., Gan, L.-H., Moffatt, J.R., Romsted, L.S., Savelli, G.: Reactions in micelles of cetyltrimethylammonium hydroxide. Test of the pseudophase model for kinetics. J. Phys. Chem. 85, 4118–4125 (1981)

    Article  CAS  Google Scholar 

  26. Lindemuth, P.M., Bertrand, G.L.: Calorimetric observations of the transition of spherical to rod like micelles with solubilized organic additives. J. Phys. Chem. 97, 7769–7773 (1993)

    Article  CAS  Google Scholar 

  27. Cerichelli, G., Mancini, G., Luchetti, G., Savelli, G., Bunton, C.A.: Surfactant effects upon cyclization of o-(omega-haloalkoxy)phenoxide ions. The role of premicellar assemblies. Langmuir 10, 3982–3987 (1994)

    Article  CAS  Google Scholar 

  28. Bunton, C.A., Savelli, G.: Organic reactivity in aqueous micelles and similar assemblies. Adv. Phys. Org. Chem. 22, 213–309 (1986)

    CAS  Google Scholar 

  29. Brinchi, L., Germani, R., Gorracci, L., Savelli, G., Bunton, C.A.: Decarboxylation and dephosphorylation in new gemini surfactants. Changes in aggregate structures. Langmuir 18, 7821–7825 (2002)

    Article  CAS  Google Scholar 

  30. Akram, M., Kumar, D., Kabir-ud-Din: Interaction between dipeptide (glycyl-phenylalanine) and ninhydrin: role of CTAB and gemini (16-s-16, s = 4, 5, 6) surfactant micelles. J. Colloid Interface Sci. 418, 324–329 (2014)

Download references

Acknowledgments

Authors are thankful to UGC (India) for financial assistance (to DK) and UGC-BSR Faculty Fellowship (to KU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Akram.

Appendix

Appendix

The rate equation for Eqs. 47 is given by:

$$ \frac{{ - {\text{d}}(([{\text{Ni(II)}}{-}{\text{Gly-Phe}}]^{ + } )_{\text{W}} + ( [ {\text{Ni(II)}}{-}{\text{Gly-Phe}}]^{ + } )_{\text{m}} )}}{{\text{d}}t} = \frac{{ - {\text{d}}([{\text{Ni(II)}}{-}{\text{Gly-Phe}}]^{+})_{{t}} }}{{\text{d}}t} = \frac{{ - {\text{d[Product]}}}}{{\text{d}}t} = k_{\text{W}}^{{\prime }}( [ {\text{Ni(II)}}{-}{\text{Gly-Phe}}]^{+})_{\text{W}} + k_{\text{m}}^{{\prime }} ( [ {\text{Ni(II)}}{-}{\text{Ni(II)}}{-}{\text{Gly-Phe}}]^{+})_{\text{m}}$$
(10)

where ([Ni(II)–Gly-Phe]+) t is the stoichiometric concentration of the metal–peptide complex at time t. The observed rate constant for the product formation, k ψ, is given by:

$$ k_{\varPsi } \, = \frac{{ - {\text{d([Ni(II)}}{-}{\text{Gly-Phe]}}^{ + } )_{{t}} }}{{\text{d}}t} / ( [ {\text{Ni(II)}}{-}{\text{Gly-Phe}}]^{ + } )_{{t}} = k_{\text{W}}^{{\prime }} A_{\text{W}} + k_{\text{m}}^{{\prime }} A_{\text{m}} $$
(11)

where A w and A m are the fractions of the uncomplexed and complexed substrates, respectively. Often, for a pseudo-first-order process [D n] ≫ ([Ni(II)–Gly-Phe]+)m and A m is constant. The equilibrium constant, K S, can be expressed in terms of the concentrations and in terms of the fractions of the complexed and uncomplexed substrates:

$$ K_{\text{S}} = \frac{{ ( [ {\text{Ni(II)}}{-}{\text{Gly-Phe}}]^{ + } )_{\text{m}} }}{{ ( ( [ {\text{Ni(II)}}{-}{\text{Gly-Phe}}]^{ + } )_{{t}} - ( [ {\text{Ni(II)}}{-}{\text{Ni(II)}}{-}{\text{Gly-Phe}}]^{ + } )_{\text{m}} ) [D_{\text{n}} ]}} = \frac{{A_{\text{m}} }}{{ [D_{\text{n}} ]A_{\text{W}} }} = \frac{{A_{\text{m}} }}{{ [D_{\text{n}} ] ( 1- A_{\text{m}} )}} $$
(12)

Combination of Eqs. 11 and 12 and rearranging leads to:

$$ k_{\psi } = \frac{{k_{\text{W}}^{{\prime }} + k_{\text{m}}^{{\prime }} K_{\text{S}} [D_{\text{n}} ]}}{{ 1+ K_{\text{S}} [D_{\text{n}} ]}} $$
(13)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akram, M., Kumar, D. & Kabir-ud-Din Catalytic Behavior of a Series of Cationic Gemini (16-s-16 Type, s = 4, 5, 6) and CTAB Surfactants on the Reaction of Ninhydrin with [Ni(II)–Gly-Phe]+ . J Solution Chem 43, 648–660 (2014). https://doi.org/10.1007/s10953-014-0149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0149-4

Keywords

Navigation