Skip to main content
Log in

Small-Angle Neutron Scattering of Aqueous SrI2 Suggests a Mechanism for Ion Transport in Molecular Water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

X-ray and neutron scattering have been used to provide insight into the structures of ionic solutions for over a century. Most of the structures discussed in the literature cover distances less than 8 Å. Outside that distance, single scattering bands have, however, been seen. For the non-hydrolyzing salt SrI2 in aqueous solution, a structure sufficient to scatter slow neutrons persists down to a concentration of at least 0.1 mol·L−1 at which the measured average distance between scatterers is over 18 Å. Over the concentration range of 1 to 0.1 mol·L−1, the full distribution of the distances between the scatterers remains within only about 10 Å, the size of an ion and its first hydration shell. This measurably correlated structure of the ions in the solution appears to hold because changes in hydration (and interior distances along any single spatial dimension) require displacements near the size of a water molecule. Together, these facts support a rotatory mechanism for simultaneous ion transport and water countertransport. A formula is presented for calculating the average, equally spaced interscatterer distance as a function of concentration. Using this relationship, the experimental results are interpreted as showing increasing ion association as the salt concentration is raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Prins, J.A.: Zur Beugung von Röntgenstrahlen in Flüssigkeiten un Ionenlösungen. Z. Phys. 71, 445–449 (1931)

    Article  CAS  Google Scholar 

  2. Hewlett, C.W.: An experimental study of the scattering of approximately homogeneous X-rays by powdered crystalline carbon, metallic lithium, and liquid benzene, mesitylene, and octane. Phys. Rev. 20, 688–708 (1922)

    Article  CAS  Google Scholar 

  3. Ghosh, J.C.: The abnormality of strong electrolytes. Part I. Electrical conductivity of aqueous salt solutions. J. Chem. Soc. 113, 449–458 (1918)

    Article  CAS  Google Scholar 

  4. Zernike, F., Prins, J.A.: Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung. Z. Phys. 41, 184–194 (1927)

    Article  Google Scholar 

  5. Prins, J.A.: Molecular arrangement and X-ray diffraction in ionic solutions. J. Chem. Phys. 3, 72–80 (1935)

    Article  CAS  Google Scholar 

  6. Marques, M.A., Marques, M.I.B., Cabaço, M.I., Gaspar, A.M., Marques, M.P.M., Amado, A.M., da Costa, A.M.A.: Evidence of a local order in concentrated aqueous solutions of salts constituted by ions of different valences. X-ray diffraction and Raman spectroscopy experiments. J. Mol. Liq. 134, 142–150 (2007)

    Article  CAS  Google Scholar 

  7. Varela, L.M., Carrete, J., García, M., Gallego, L.J., Turmine, M., Rilo, E., Cabeza, O.: Pseudolattice theory of charge transport in ionic solutions: corresponding states law for the electric conductivity. Fluid Phase Equilib. 298, 280–286 (2010)

    Article  CAS  Google Scholar 

  8. Brämer, R., Ruland, W.: The limitations of the paracrystalline model of disorder. Makromol. Chem. 177, 3601–3617 (1976)

    Article  Google Scholar 

  9. Matsuoka, H., Tanaka, H., Hashimoto, T., Ise, N.: Elastic scattering from cubic lattice systems with paracrystalline distortion. Phys. Rev. B 36, 1754–1765 (1987)

    Article  Google Scholar 

  10. Matsuoka, H., Tanaka, H., Iizuke, N., Hashimoto, T., Ise, N.: Elastic scattering from cubic lattice systems with paracrystalline distortion. II. Phys. Rev. B 41, 3854–3856 (1990)

    Article  Google Scholar 

  11. Glinka, C.J., Barker, J.G., Hammouda, B., Krueger, S., Moyer, J.J., Orts, W.J.: The 30-meter small angle neutron scattering instruments at the national institute of standards and technology. J. Appl. Crystallogr. 31, 430–445 (1998)

    Article  CAS  Google Scholar 

  12. Kline, S.R.: Reduction and analysis of SANS and USANS data using IGOR Pro. J. Appl. Crystallogr. 39, 895–900 (2006)

    Article  CAS  Google Scholar 

  13. Moore, P.B.: Small-angle scattering. Information content and error analysis. J. Appl. Crystallogr. 13, 168–175 (1980)

    Article  CAS  Google Scholar 

  14. Gray, R.W.: Encyclopedia Polyhedra: Dodecahedron. http://www.rwgrayprojects.com/rbfnotes/polyhed/PolyhedraData/RhombicDodeca/RhombicDodecahedron.pdf (2007). Accessed March 2012

  15. Frank, H.S., Thompson, P.T.: Fluctuations and the limit of validity of the Debye–Hückel Theory. J. Chem. Phys. 31, 1086–1095 (1959)

    Article  CAS  Google Scholar 

  16. Panckhurst, M.H., Macaskill, J.B.: Specific interactions and single-ion activity coefficients in mixed electrolyte solutions. J. Solution Chem. 5, 469–482 (1976)

    Article  CAS  Google Scholar 

  17. Hefter, G.: When spectroscopy fails: the measurement of ion pairing. Pure Appl. Chem. 78, 1571–1586 (2006)

    Article  CAS  Google Scholar 

  18. Jeffery, S., Hoffmann, P.M., Pethica, J.B., Ramanujan, C., Özer, Ö., Oral, A.: Direct measurement of molecular stiffness and damping in confined water layers. Phys. Rev. B 70, 054114-054111–054114-054118 (2004)

    Article  Google Scholar 

  19. Persson, I.: Hydrated metal ions in aqueous solution: how regular are their structures? Pure Appl. Chem. 82, 1901–1917 (2010)

    Article  CAS  Google Scholar 

  20. Marcus, Y.: Ionic radii in aqueous solutions. J. Solution Chem. 12, 271–275 (1983)

    Article  CAS  Google Scholar 

  21. Adam, G., Gibbs, J.H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–149 (1965)

    Article  CAS  Google Scholar 

  22. Doan, T.H., Sangster, J.: Viscosities of concentrated aqueous solutions of some 1:1, 2:1, and 3:1 nitrates at 25°C. J. Chem. Eng. Data 26, 141–144 (1981)

    Article  CAS  Google Scholar 

  23. Lencka, M.M., Anderko, A., Sanders, S.J., Young, R.D.: Modeling viscosity of multicomponent electrolyte solutions. Int. J. Thermophys. 19, 367–378 (1998)

    Article  CAS  Google Scholar 

  24. Donati, C., Douglas, J.F., Kob, W., Plimpton, S.J., Poole, P.H., Glotzer, S.C.: Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338–2341 (1998)

    Article  CAS  Google Scholar 

  25. Matuura, R., Koga, Y.: Self-diffusion of iodide ion and strontium ion in strontium iodide solutions. Bull. Chem. Soc. Jpn. 32, 1143–1148 (1959)

    Article  Google Scholar 

  26. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd rev. edn. Butterworths, London (1959), Appendix 8.10

Download references

Acknowledgments

Thanks are due for valuable discussions with John Barker, Craig Brown, Jack Douglas, Boualem Hammouda, Joseph Hubbard, Steve Kline, Susan Krueger, Yun Liu, and Dan Neumann. This work benefitted from SASView software, originally developed by the DANSE project under NSF award DMR-0520547.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Rubinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinson, K.A. Small-Angle Neutron Scattering of Aqueous SrI2 Suggests a Mechanism for Ion Transport in Molecular Water. J Solution Chem 43, 453–464 (2014). https://doi.org/10.1007/s10953-014-0148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0148-5

Keywords

Navigation