Abstract
UV–vis absorption, fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopic methods were employed to reveal the mechanism of the binding between coenzyme Q10 (CoQ10) and human serum albumin (HSA) under simulated physiological conditions (pH = 7.4). The binding parameters were calculated by the fluorescence quenching method. The results demonstrate that the fluorescence quenching of HSA by CoQ10 is mainly static quenching due to the formation of HSA–CoQ10 complexes, and the number of binding sites (n) is equal to 1. The thermodynamic parameters (ΔH 0 = −43.18 kJ·mol−1, ΔS 0 = −47.05 J·mol−1·K−1, ΔG 0 = −29.15 kJ·mol−1) indicate that the enthalpy-driven binding process is favorable, and the main binding forces between CoQ10 and HSA are hydrogen bonds and van der Waals forces. The competitive experiments using different site markers indicate that subdomain IIA (site I) of HSA is the primary binding site for CoQ10. The average binding distance (r) between HSA and CoQ10 is 4.29 nm, which was estimated according to the Förster’s theory of non-radiation energy transfer. In addition, the UV–vis absorption, synchronous fluorescence, three-dimensional fluorescence, 8-anilino-1-naphthalenesulfonic acid fluorescence, CD spectra, and FT-IR spectroscopy data show slight conformational changes of HSA in the presence of CoQ10. These findings provide valuable binding information between HSA and CoQ10, which may be beneficial to pharmacokinetics research and could be used to design the dosage form of CoQ10.
Similar content being viewed by others
References
Cui, F.L., Yan, Y.H., Zhang, Q.Z., Qu, G.R., Du, J., Yao, X.J.: A study on the interaction between 5-methyluridine and human serum albumin using fluorescence quenching method and molecular modeling. J. Mol. Model. 16, 255–262 (2010)
Suryawanshi, V.D., Anbhule, P.V., Gore, A.H., Patil, S.R., Kolekar, G.B.: Spectroscopic investigation on the interaction pyrimidine derivative, z-amino-6-hydroxy-4-(3,4-dimethoxyphenyl)-pyrimidine-5-carbonitrile with human serum albumin: mechanistic and conformational study. Ind. Eng. Chem. Res. 51, 95–102 (2012)
Tousi, S.H., Saberi, M.R., Chamani, J.: Comparing the interaction of cyclophosphamide monohydrate to human serum albumin as opposed to holo-transferrin by spectroscopic and molecular modeling methods: evidence foe allocating the binding site. Protein Pept. Lett. 17, 1524–1535 (2010)
Curry, S., Mandelkow, H., Brick, P., Franks, N.: Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol. 5, 827–835 (1998)
Buttar, D., Colclough, N., Gerhardt, S., MacFaul, P.A., Phillips, S.D., Plowright, A., Whittamore, P., Tam, K., Maskos, K., Steinbacher, S., Steuber, H.: A combined spectroscopic and crystallographic approach to probing drug–human serum albumin interactions. Bioorg. Med. Chem. 18, 7486–7496 (2010)
Pan, X.R., Qin, P.F., Liu, R.T., Wang, J.: Characterizing the interaction between tartrazine and two serum albumins by a hybrid spectroscopic approach. J. Agric. Food Chem. 59, 6650–6656 (2011)
Darwish, S.M., Abu Sharkh, S.E., Abu Teir, M.M., Makharza, S.A., Abu-hadid, M.M.: Spectroscopic investigations of pentobarbital interaction with human serum albumin. J. Mol. Struct. 963, 122–129 (2010)
Zhang, W.J., Xiong, X.J., Wang, F., Ge, Y.S., Liu, Y.: Studies of the interaction between ronidazole and human serum albumin by spectroscopic and molecular docking methods. J. Solution Chem. 42, 1194–1206 (2013)
Frei, B., Kim, M.C., Ames, B.N.: Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. USA 87, 4879–4883 (1990)
Itagaki, S., Ochiai, A., Kobayashi, M., Sugawara, M., Hiran, T., Iseki, K.: Interaction of coenzyme Q10 with the intestinal drug transporter p-glycoprotein. J. Agric. Food Chem. 56, 6923–6927 (2008)
Crane, F.L.: Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr. 20, 591–598 (2001)
Shults, C.W., Oakes, D., Kieburtz, K., Beal, M.F., Haas, R., Plumb, S., Juncos, J.L., Nutt, J., Shoulson, I., Carter, J., Kompoliti, K., Perlmutter, J.S., Reich, S., Stern, M., Watts, R.L., Kurlan, R., Molho, E., Harrison, M., Lew, M.: Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch. Neurol. 59, 1541–1550 (2002)
Mancini, A., Festa, R., Raimondo, S., Pontecorvi, A., Littarru, G.P.: Hormonal influence on coenzyme Q10 levels in blood plasma. Int. J. Mol. Sci. 12, 9216–9225 (2011)
Stocker, R., Bowry, V.W., Frei, B.: Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does α-tocopherol. Proc. Natl. Acad. Sci. USA 88, 1646–1650 (1991)
Mizushina, Y., Takeuchi, T., Takakusagi, Y., Yonezawa, Y., Mizuno, T., Yanagi, K.-I., Imamoto, N., Sugawara, F., Sakaguchi, K., Yoshida, H., Fujita, M.: Coenzyme Q10 as a potent compound that inhibits Cdt1–geminin interaction. BBA Gen Subj 1780, 203–213 (2008)
Qiu, L., Ding, H., Wang, W., Kong, Z., Li, X., Shi, Y., Zhong, W.: Coenzyme Q(10) production by immobilized Sphingomonas sp. ZUTE03 via a conversion–extraction coupled process in a three-phase fluidized bed reactor. Enzym Microb. Technol. 50, 137–142 (2012)
Dimitrova, S., Pavlova, K., Lukanov, L., Zagorchev, P.: Synthesis of coenzyme Q10 and β-carotene by yeasts isolated from antarctic soil and lichen in response to ultraviolet and visible radiations. Appl. Biochem. Biotechnol. 162, 795–804 (2010)
Lipshutz, B.H., Lower, A., Berl, V., Schein, K., Wetterich, F.: An improved synthesis of the “miracle nutrient” coenzyme Q10. Org. Lett. 7, 4095–4097 (2005)
Soares, S., Mateus, N., Freitas, V.D.: Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary α-amylase (HSA) by fluorescence quenching. J. Agric. Food Chem. 55, 6726–6735 (2007)
Mahesha, H.G., Singh, S.A., Srinivasan, N., Rao, A.G.: A spectroscopic study of the interaction of isoflavones with human serum albumin. FEBS J. 273, 451–467 (2006)
Chen, T., Cao, H., Zhu, S., Lu, Y., Shang, Y., Wang, M., Tang, Y., Zhu, L.: Investigation of the binding of Salvianolic acid B to human serum albumin and the effect of metal ions on the binding. Spectrochim. Acta A 81, 645–652 (2011)
Kitamura, K., Omran, A.A., Takegami, S., Tanaka, R., Kitade, T.: 19F NMR spectroscopic characterization of the interaction of niflumic acid with human serum albumin. Anal. Bioanal. Chem. 387, 2843–2848 (2007)
Chi, Z., Liu, R.: Phenotypic characterization of the binding of tetracycline to human serum albumin. J. Agric. Food Chem. 12, 203–209 (2011)
Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn, pp. 277–285. Plenum Press, New York (2006)
Teng, Y., Liu, R.T., Li, C., Xia, Q., Zhang, P.J.: The interaction between 4-aminoantipyrine and bovine serum albumin: multiple spectroscopic and molecular docking investigations. J. Hazard. Mater. 190, 574–581 (2011)
Wu, X., Liu, J., Huang, H., Xue, W., Yao, X., Jin, J.: Interaction studies of aristolochic acid I with human serum albumin and the binding site of aristolochic acid I in subdomain IIA. Int. J. Biol. Macromol. 49, 343–350 (2011)
Hu, Y.J., Liu, Y., Xiao, X.H.: Investigation of the interaction between berberine and human serum albumin. Biomacromolecules 10, 517–521 (2009)
Wang, W., Min, W., Chen, J., Wu, X., Hu, Z.: Binding study of diprophylline with lysozyme by spectroscopic methods. J. Lumin. 131, 820–824 (2011)
Zhang, H., Huang, X., Zhang, M.: Spectral diagnostics of the interaction between pyridoxine hydrochloride and bovine serum albumin in vitro. Mol. Biol. Rep. 35, 699–705 (2008)
Toneatto, J., Argüello, G.A.: New advances in the study on the interaction of [Cr(phen)2(dppz)]3+ complex with biological models; association to transporting proteins. J. Inorg. Biochem. 105, 645–651 (2011)
Ding, F., Liu, W., Diao, J.X., Sun, Y.: Characterization of Alizarin Red S binding sites and structural changes on human serum albumin: a biophysical study. J. Hazard. Mater. 186, 352–359 (2011)
Sudlow, G., Birkett, D.J., Wade, D.N.: The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol. 11, 824–832 (1975)
Brodersen, R., Sjödin, T., Sjöholm, I.: Independent binding of ligands to human serum albumin. J. Biol. Chem. 252, 5067–5072 (1977)
Zhang, G., Wang, L., Pan, J.: Probing the binding of the flavonoid diosmetin to human serum albumin by multispectroscopic techniques. J. Agric. Food Chem. 60, 2721–2729 (2012)
Zhang, G., Ma, Y.: Mechanistic and conformational studies on the interaction of food dye amaranth with human serum albumin by multispectroscopic methods. Food Chem. 136, 442–449 (2013)
Lu, D., Zhao, X., Zhao, Y., Zhang, B., Geng, M., Liu, R.: Binding of Sudan II and Sudan IV to bovine serum albumin: comparison studies. Food Chem. Toxicol. 49, 3158–3164 (2011)
Van de Hulst, H.C.: Light Scattering by Small Particles, pp. 383–446. Dover Publications, New York (1981)
Liu, W., Yang, T., Yao, C., Zuo, S., Kong, Y.: Spectroscopic studies on the interaction between troxerutin and bovine hemoglobin. J. Solution Chem. 42, 1169–1182 (2013)
Wang, Y., Wang, X., Wang, J., Zhao, Y., He, W., Guo, Z.: Noncovalent interactions between a trinuclear monofunctional platinum complex and human serum albumin. Inorg. Chem. 50, 12661–12668 (2011)
Cheng, Z., Zhang, L., Zhao, H., Liu, R., Xu, Q.: Spectroscopic investigation of the interactions of cryptotanshinone and icariin with two serum albumins. J. Solution Chem. 42, 1238–1262 (2013)
Liu, M., Zhang, W., Qiu, L., Lin, X.: Synthesis of butyl–isobutyl-phthalate and its interaction with α-glucosidase in vitro. J. Biochem. 149, 27–33 (2011)
Shen, H., Gu, Z., Jian, K., Qi, J.: In vitro study on the binding of gemcitabine to bovine serum albumin. J. Pharm. Biomed. Anal. 75, 86–93 (2013)
Hemmateenejad, B., Shamsipur, M., Samari, F., Khayamian, T., Ebrahimi, M., Rezaei, Z.: Combined fluorescence spectroscopy and molecular modeling studies on the interaction between harmalol and human serum albumin. J. Pharm. Biomed. Anal. 67–68, 201–208 (2012)
Liang, M., Liu, R., Qi, W., Su, R., Yu, Y., Wang, L., He, Z.: Interaction between lysozyme and procyanidin: multilevel structural nature and effect of carbohydrates. Food Chem. 138, 1596–1603 (2012)
Chen, Y.H., Yang, J.T., Martinez, H.M.: Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry (US) 11, 4120–4131 (1972)
Greenfield, N.J., Fasman, G.D.: Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry (US) 8, 4108–4116 (1969)
Divsalar, A., Saboury, A.A., Haertlé, T., Sawyer, L., Mansouri-Torshizi, H., Barzegar, L.: Spectroscopic and calorimetric study of 2,2′-dibipyridin Cu(II) chloride binding to bovine β-lactoglobulin. J. Solution Chem. 43, 705–715 (2013)
Zhang, G., Ma, Y., Wang, L., Zhang, Y., Zhou, J.: Multispectroscopic studies on the interaction of maltol, a food additive, with bovine serum albumin. Food Chem. 133, 264–270 (2012)
Acknowledgments
This work was supported by the Program for New Century Excellent Talents in Chinese University (NCET-08-0386), the 863 Program of China (2008AA10Z318, 2012AA06A303, 2013AA102204), the Natural Science Foundation of China (20976125, 31071509, 51173128) and Tianjin (10JCYBJC05100), the Ministry of Science and Technology of China (2012YQ090194), the Beiyang Young Scholar of Tianjin University (2012) and the Program of Introducing Talents of Discipline to Universities of China (Number B06006).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Peng, X., Sun, Y., Qi, W. et al. Study of the Interaction Between Coenzyme Q10 and Human Serum Albumin: Spectroscopic Approach. J Solution Chem 43, 585–607 (2014). https://doi.org/10.1007/s10953-014-0146-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-014-0146-7