Skip to main content
Log in

Raman Spectroscopic Investigation of Speciation in MnSO4(aq)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Raman spectroscopic measurements have been made on aqueous solutions of Mn(ClO4)2, MnSO4, and (NH4)2SO4 in the terahertz frequency region (45–600 cm−1), in a few cases to higher wavenumbers of 4,200 cm−1 and also down to low concentrations (0.0027 mol·L−1). In solutions of Mn(ClO4)2 with water and heavy water, the hexahydrate species and its corresponding deuterate, [Mn(OH2)6]2+ and [Mn(OD2)6]2+, were characterized and weak, strongly polarized bands are observed at 354 and 338 cm−1. These modes were assigned to ν 1(MnO6) of the species [(Mn(OH2)6]2+ and [(Mn(OD2)6]2+, respectively. In MnSO4(aq) the ν 1(\( {\text{SO}}_{4}^{2 - } \)) mode at 980 cm−1 broadens with increasing concentration and shifts to higher wavenumbers. At the same time, a band at 995 cm−1 was detected and assigned to the bound sulfate of [MnOSO3], an inner-sphere complex (ISC). Confirmation of this assignment is provided by the simultaneous appearance of stretching bands of the Mn2+\( {\text{OSO}}_{3}^{2 - } \) bond of the complex at 216 cm−1 and for the MnO5O* skeleton mode of [(H2O)5MnOSO3] at 321 cm−1 that is visible as a weak component next to the symmetric stretching mode, ν 1(MnO6), of the [Mn(OH2)6]2+(aq) species at 354 cm−1. The similarity of the ν 1(\( {\text{SO}}_{4}^{2 - } \)) Raman band profiles for MnSO4 in H2O and D2O is further strong evidence for formation of an ISC. After subtraction of the ISC component at 995 cm−1, the ν 1(\( {\text{SO}}_{4}^{2 - } \)) band in MnSO4(aq) showed systematic differences from that in (NH4)2SO4(aq). This is consistent with a ν 1(\( {\text{SO}}_{4}^{2 - } \)) mode at 982.7 cm−1 that can be assigned to the occurrence of outer-sphere complex ions (OSCs). These observations are shown to be in qualitative agreement with results derived from previous relaxation measurements. The band profile of the much weaker asymmetric S–O stretching modes, ν 3(\( {\text{SO}}_{4}^{2 - } \)), shows asymmetry and was fitted with four band components {including ν 3(\( {\text{SO}}_{4}^{2 - } \)(aq))}. Quantitative Raman measurements showed that the formation of ISCs in MnSO4(aq) is comparable to that found in the similar MgSO4(aq) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Greenwood, N.N., Earnshaw, E.: Chemistry of the Elements, 2nd edn., Chap. 24. Elsevier Science, Amsterdam (1997)

  2. Richens, D.T.: The Chemistry of Aqua Ions. Chap. 7, Group 7 Elements: Manganese, Technetium and Rhenium, Wiley, New York (1997)

  3. Reidies, A.H.: Manganese Compounds. In: Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Wiley, New York (2002)

  4. Lever, A.B.P.: Inorganic Electronic Spectroscopy, 2nd edn. Elsevier, Amsterdam (1984)

    Google Scholar 

  5. Deeth, R.J., Randell, K.: Ligand field stabilization and activation energies revisited: molecular modeling of the thermodynamic and kinetic properties of divalent, first-row aqua complexes. Inorg. Chem. 47, 7377–7388 (2008)

    Article  CAS  Google Scholar 

  6. Patel, M.B., Patel, S., Khandelwal, D.P., Bist, H.D.: Vibrational studies and phase transitions in Co(ClO4)2·6H2O and Mn(ClO4)2·6H2O. Chem. Phys. Lett. 101, 93–99 (1983)

    Article  CAS  Google Scholar 

  7. Ribar, B., Petrovic, D., Djuric, S., Krstanovic, I.: The crystal structure of hexaquomanganese nitrate. Mn(OH2)6(NO3)2. Z. Krist. 144, 334–340 (1976)

    Article  Google Scholar 

  8. Chevrier, G.: A New example of an arrangement of antiphase domains: investigation by neutron diffraction of deuterated manganese fluosilicate. Acta Cryst. B47, 224–228 (1991)

    Article  CAS  Google Scholar 

  9. Iijima, T., Hamada, K., Mizuno, M., Endo, K., Suhara, M.: Molecular dynamics and phase transitions in paramagnetic [Mn(H2O)6][SiF6] investigated by 2H NMR. J. Phys. Chem. Solids 66, 1101–1106 (2005)

    Article  CAS  Google Scholar 

  10. Ferraris, G., Jones, D.W., Yerkess, J.: Refinement of the crystal structure of magnesium sulphate heptahydrate (Epsomite) by neutron diffraction. J. Chem. Soc. Dalton. Trans. (1973). doi:10.1039/DT9730000816

    Google Scholar 

  11. Euler, H., Barbier, B., Meents, A., Kirfel, A.: Crystal structure of Tutton’s salts K2[MII(H2O)6](SeO4)2, MII = Co, Ni, Zn and refinement of the crystal structure of potassium hexaaquamagnesium(II) selenate, K2[Mg(H2O)6](SeO4)2. Z. Kristallogr. NCS 224, 351–354 (2009)

    CAS  Google Scholar 

  12. Euler, H., Barbier, B., Meents, A., Kirfel, A.: Crystal structure of Tutton’s salts, Rb2[MII(H2O)6](SeO4)2, MII = Mg, Co, Mn, Zn., Z. Kristallogr. NCS 218, 265–268 (2003)

    Google Scholar 

  13. Sham, T.K., Hastings, J.B., Perlman, M.L.: Structure and dynamic behavior of transition-metal ions in aqueous solution: an EXAFS study of electron-exchange reactions. J. Am. Chem. Soc. 102, 5904–5906 (1980)

    Article  CAS  Google Scholar 

  14. Beagley, B., Gahan, B., Greaves, G.N., McAuliffe, C.A., White, E.W.: Detection of the concentration dependence of co-ordination to manganese in aqueous MnBr 2 solutions by X-ray absorption spectroscopy. J. Chem. Soc. Chem. Commun. (1985). doi:10.1039/C39850001804

    Google Scholar 

  15. Tajiri, Y.M., Ichihashi, M., Mibuchi, T., Wakita, H.: An X-ray diffraction Investigation of the coordination structure of Mn(II) ions in highly concentrated aqueous MnBr 2 and MnCl2 solutions. Bull. Chem. Soc. Jpn 59, 1155–1159 (1986)

    Article  CAS  Google Scholar 

  16. Inada, Y., Hayashi, H., Sugimoto, K., Funahashi, S.: Solvation structures of manganese(II), iron(II), cobalt(II), nickel(II), copper(II), zinc(II), and gallium(III) ions in methanol, ethanol, dimethyl sulfoxide, and trimethyl phosphate as studied by EXAFS and electronic spectroscopies. J. Phys. Chem. A 103, 1401–1406 (1999)

    Article  CAS  Google Scholar 

  17. Beagley, B., McAuliffe, C.A., Smith, S.P.B., White, E.W.: EXAFS studies of aqueous solutions of manganese(II) chloride and bromide: structural variations with concentration and interactions with solvent. J. Phys. 3, 7919–7930 (1991)

    CAS  Google Scholar 

  18. Chen, Y., Fulton, J.L., Partenheimer, W.: A XANES and EXAFS study of hydration and ion pairing in ambient aqueous MnBr 2 solutions. J. Solution Chem. 34, 993–1007 (2005)

    Article  CAS  Google Scholar 

  19. Böttcher, M.E., Usdowski, E.: An estimation of dissociation constants for Mn(II) complexes in aqueous solutions up to 300 °C. Z. Phys. Chem. 167, 81–86 (1990)

    Article  Google Scholar 

  20. Guo, X., Xiao, H.S., Wang, F., Zhang, Y.-H.: Micro-Raman and FTIR spectroscopic observation on the phase transitions of MnSO4 droplets and ionic interactions between Mn2+ and SO4 2−. J. Phys. Chem. A 114, 6480–6486 (2010)

    Article  CAS  Google Scholar 

  21. Malatesta, F., Trombella Fanelli, N.: Activity and osmotic coefficients from the emf of liquid membrane cells. IX: Mn(ClO4)2 and MnSO4 in water at 25°C. J. Solution Chem. 29, 685–697 (2000)

    Article  CAS  Google Scholar 

  22. Bechtler, A., Breitschwerdt, K.G., Tamm, K.: Ultrasonic relaxation studies in aqueous solutions of 2–2 electrolytes. J. Chem. Phys. 52, 2975–2982 (1970)

    Article  CAS  Google Scholar 

  23. Jackopin, L.G., Yeager, E.: Ultrasonic relaxation in manganese sulfate solutions. J. Phys. Chem. 74, 3766–3772 (1970)

    Article  CAS  Google Scholar 

  24. Atkinson, G., Kor, S.K.: The kinetics of ion association in manganese sulfate solutions. Results in water, dioxane–water mixtures, and methanol–water mixtures at 25 °C. J. Phys. Chem. 69, 128–133 (1965)

    Article  CAS  Google Scholar 

  25. Atkinson, G., Kor, S.K.: The Kinetics of ion association in manganese sulfate solutions. II: thermodynamics of stepwise association in water. J. Phys. Chem. 71, 673–677 (1967)

    Article  CAS  Google Scholar 

  26. Vogel, A.I.: A Text-Book of Quantitative Inorganic Analysis, 3rd edn. Longman, London (1961)

    Google Scholar 

  27. Rudolph, W.W., Irmer, G.: Raman and infrared spectroscopic investigations on aqueous alkali metal phosphate solutions and density functional theory calculations of phosphate–water clusters. Appl. Spectrosc. 61, 1312–1327 (2007)

    Article  CAS  Google Scholar 

  28. Rudolph, W.W., Fischer, D., Irmer, G.: Vibrational spectroscopy studies and density functional theory calculations in the CO2–water system. Appl. Spectrosc. 60, 130–144 (2006)

    Article  CAS  Google Scholar 

  29. Rudolph, W.W., Brooker, M.H., Pye, C.C.: Hydration of lithium ion in aqueous solutions. J. Phys. Chem. 99, 3793–3797 (1995)

    Article  CAS  Google Scholar 

  30. Rudolph, W.W., Irmer, G.: Raman and infrared spectroscopic investigation of contact ion pair formation in aqueous cadmium sulfate solutions. J. Solution Chem. 23, 663–674 (1994)

    Article  CAS  Google Scholar 

  31. Rudolph, W.: Structure and dissociation of hydrogen sulphate ion in aqueous solution over a broad temperature range: a Raman study. Z. Phys. Chem. 194, 73–95 (1996)

    Article  CAS  Google Scholar 

  32. Rudolph, W.W., Irmer, G., Hefter, G.T.: Raman spectroscopic investigation of speciation in MgSO4(aq). Phys. Chem. Chem. Phys. 5, 5253–5261 (2003)

    Article  CAS  Google Scholar 

  33. Rudolph, W.W.: Raman and infrared spectroscopic investigation of speciation in BeSO4(aq). J. Solution Chem. 39, 1039–1059 (2010)

    Article  CAS  Google Scholar 

  34. Helm, L., Merbach, A.E.: Water exchange in metal ions: experiments and simulations. Coord. Chem. Rev. 187, 151–181 (1999)

    Article  CAS  Google Scholar 

  35. Loeffler, H.H., Mohammed, A.M., Inada, Y., Funahashi, S.: Water exchange dynamics of manganese(II), cobalt(II), and nickel(II) ions in aqueous solution. J. Comput. Chem. 27, 1944–1949 (2006)

    Article  Google Scholar 

  36. Rudolph, W.W., Irmer, G.: Hydration of the calcium(II) ion in an aqueous solution of common anions (CIO4 , Cl, Br, and NO3 ). J. Chem. Soc., Dalton Trans. 42, 3919–3935 (2013)

    Article  CAS  Google Scholar 

  37. Rudolph, W.W., Irmer, G.: Hydration and speciation studies of Mn2+ in aqueous solution with simple monovalent anions (CIO4 , NO3 , Cl, Br). J. Chem. Soc., Dalton Trans. 42, 14460–14472 (2013)

    Article  CAS  Google Scholar 

  38. Rudolph, W., Schönherr, S.: I. Zur schwingungsspektroskopischen Charakterisierung des Hexaquoaluminium(III)-komplexions. Z. Phys. Chem. (Leipzig) 270, 1121–1134 (1989)

    CAS  Google Scholar 

  39. Rudolph, W.W., Mason, R., Pye, C.C.: Aluminium(III) hydration in aqueous solution. A Raman spectroscopic investigation and an ab initio molecular orbital study of aluminium(III) water clusters. Phys. Chem. Chem. Phys. 2, 5030–5040 (2000)

    Article  CAS  Google Scholar 

  40. Rudolph, W.W., Pye, C.C.: Gallium(III) hydration in aqueous solution of perchlorate, nitrate and sulfate. Raman and 71-Ga NMR spectroscopic studies and ab initio molecular orbital calculations of gallium(III) water clusters. Phys. Chem. Chem. Phys. 4, 4319–4327 (2002)

    Article  CAS  Google Scholar 

  41. Rudolph, W.W., Fischer, D., Tomney, M.R., Pye, C.C.: Indium(III) hydration in aqueous solutions of perchlorate, nitrate and sulfate. Raman and Infrared spectroscopic studies and ab initio molecular orbital calculations on indium(III) water clusters. Phys. Chem. Chem. Phys. 6, 5145–5155 (2004)

    Article  CAS  Google Scholar 

  42. Pye, C.C., Rudolph, W.W.: An ab initio and Raman investigation of magnesium(II) hydration. J. Phys. Chem. A 102, 9933–9943 (1998)

    Article  CAS  Google Scholar 

  43. Rudolph, W.W., Brooker, M.H., Tremaine, P.: Raman spectroscopic investigation of aqueous FeSO4 in neutral and acidic solutions from 25 °C to 303 °C: inner- and outer-sphere complexes. J. Solution Chem. 26, 757–777 (1997)

    Article  CAS  Google Scholar 

  44. Rudolph, W.W., Pye, C.C.: Zinc(II) hydration in aqueous solution. A Raman spectroscopic investigation and an ab initio molecular orbital study. Phys. Chem. Chem. Phys. 1, 4583–4593 (1999)

    Article  CAS  Google Scholar 

  45. Nakamoto, K.: Infrared Spectra of Inorganic and Coordination Compounds, 2nd edn. Wiley, New York (1970)

    Google Scholar 

  46. Nakagawa, I., Shimanouchi, T.: Infrared absorption spectra of aquo complexes and the nature of co-ordination bonds. Spectrochim. Acta 20, 429–439 (1964)

    Article  CAS  Google Scholar 

  47. Pearson, R.G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)

    Article  CAS  Google Scholar 

  48. Bergström, P.A., Lindgren, J., Kristiansson, O.: An IR study of the hydration of perchlorate, nitrate, iodide, bromide, chloride and sulfate anions in aqueous solution. J. Phys. Chem. 95, 8575–8580 (1991)

    Article  Google Scholar 

  49. Walrafen, G.E., Hokmabadi, M.S., Yang, W.-H., Chu, Y.C., Monosmith, B.: Collision-induced Raman scattering from water and aqueous solutions. J. Phys. Chem. 93, 2909–2917 (1989)

    Article  CAS  Google Scholar 

  50. Brooker, M.H., Hancock, G., Rice, B.C., Shapter, J.: Raman frequency and intensity studies of liquid H2O, H 182 O and D2O. J. Raman Spectrosc. 20, 683–694 (1989)

    Article  CAS  Google Scholar 

  51. Kanno, H., Hiraishi, J.: Existence of “nearly free” hydrogen bonds in glassy aqueous calcium perchlorate solutions. Chem. Phys. Lett. 83, 452–454 (1981)

    Article  CAS  Google Scholar 

  52. Musinu, A., Paschina, G., Piccaluga, G.: On the structure of the NH4 + ion in aqueous solution. Chem. Phys. Lett. 80, 163–167 (1981)

    Article  CAS  Google Scholar 

  53. Marcus, Y.: Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1370 (2009)

    Article  CAS  Google Scholar 

  54. Pye, C.C., Rudolph, W.W.: An ab initio and Raman investigation of sulfate ion hydration. J. Phys. Chem. A 105, 905–912 (2001)

    Article  CAS  Google Scholar 

  55. Rudolph, W.W.: Hydration and waterligand replacement in aqueous cadmium(II) sulfate solution. A Raman and infrared study. Faraday Trans. 92, 489–499 (1998)

    Article  Google Scholar 

  56. Rudolph, W., Schönherr, S.: II. Zur Sulfatokomplexbildung in Aluminiumsulfat-Lösungen und Hydratschmelzen. Z. Phys. Chem. 172, 31–48 (1991)

    CAS  Google Scholar 

  57. Eigen, M., Tamm, K.: Schallabsorption in Elektrolytlösungen als Folge chemischer Relaxation. I. Relaxationstheorie der mehrstufigen Dissoziation. Z. Elektrochem. 66, 93–107 (1962)

    CAS  Google Scholar 

  58. Eigen, M., Tamm, K.: Schallabsorption in Elektrolytlösungen als Folge chemischer Relaxation. II. Meßergebnisse und Relaxationsmechanismen für 2-2–wertigen Elektrolyte. Z. Elektrochem. 66, 107–121 (1962)

    CAS  Google Scholar 

  59. James, D.W., Frost, R.L.: Ion–ion–solvent interactions in solution. Aqueous solutions of nitrates of cations from Groups 2A and 3A. Aust. J. Chem. 35, 1793–1806 (1982)

    Article  CAS  Google Scholar 

  60. James, D.W., Carrick, M.T., Frost, R.L.: Structure of aqueous solutions: fourier transformation and band component analysis in magnesium nitrate solutions. J. Raman Spectrosc. 13, 115–119 (1982)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram W. Rudolph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudolph, W.W., Irmer, G. Raman Spectroscopic Investigation of Speciation in MnSO4(aq). J Solution Chem 43, 465–485 (2014). https://doi.org/10.1007/s10953-014-0145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0145-8

Keywords

Navigation