Abstract
Raman spectroscopic measurements have been made on aqueous solutions of Mn(ClO4)2, MnSO4, and (NH4)2SO4 in the terahertz frequency region (45–600 cm−1), in a few cases to higher wavenumbers of 4,200 cm−1 and also down to low concentrations (0.0027 mol·L−1). In solutions of Mn(ClO4)2 with water and heavy water, the hexahydrate species and its corresponding deuterate, [Mn(OH2)6]2+ and [Mn(OD2)6]2+, were characterized and weak, strongly polarized bands are observed at 354 and 338 cm−1. These modes were assigned to ν 1(MnO6) of the species [(Mn(OH2)6]2+ and [(Mn(OD2)6]2+, respectively. In MnSO4(aq) the ν 1(\( {\text{SO}}_{4}^{2 - } \)) mode at 980 cm−1 broadens with increasing concentration and shifts to higher wavenumbers. At the same time, a band at 995 cm−1 was detected and assigned to the bound sulfate of [MnOSO3], an inner-sphere complex (ISC). Confirmation of this assignment is provided by the simultaneous appearance of stretching bands of the Mn2+−\( {\text{OSO}}_{3}^{2 - } \) bond of the complex at 216 cm−1 and for the MnO5O* skeleton mode of [(H2O)5MnOSO3] at 321 cm−1 that is visible as a weak component next to the symmetric stretching mode, ν 1(MnO6), of the [Mn(OH2)6]2+(aq) species at 354 cm−1. The similarity of the ν 1(\( {\text{SO}}_{4}^{2 - } \)) Raman band profiles for MnSO4 in H2O and D2O is further strong evidence for formation of an ISC. After subtraction of the ISC component at 995 cm−1, the ν 1(\( {\text{SO}}_{4}^{2 - } \)) band in MnSO4(aq) showed systematic differences from that in (NH4)2SO4(aq). This is consistent with a ν 1(\( {\text{SO}}_{4}^{2 - } \)) mode at 982.7 cm−1 that can be assigned to the occurrence of outer-sphere complex ions (OSCs). These observations are shown to be in qualitative agreement with results derived from previous relaxation measurements. The band profile of the much weaker asymmetric S–O stretching modes, ν 3(\( {\text{SO}}_{4}^{2 - } \)), shows asymmetry and was fitted with four band components {including ν 3(\( {\text{SO}}_{4}^{2 - } \)(aq))}. Quantitative Raman measurements showed that the formation of ISCs in MnSO4(aq) is comparable to that found in the similar MgSO4(aq) system.
Similar content being viewed by others
References
Greenwood, N.N., Earnshaw, E.: Chemistry of the Elements, 2nd edn., Chap. 24. Elsevier Science, Amsterdam (1997)
Richens, D.T.: The Chemistry of Aqua Ions. Chap. 7, Group 7 Elements: Manganese, Technetium and Rhenium, Wiley, New York (1997)
Reidies, A.H.: Manganese Compounds. In: Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Wiley, New York (2002)
Lever, A.B.P.: Inorganic Electronic Spectroscopy, 2nd edn. Elsevier, Amsterdam (1984)
Deeth, R.J., Randell, K.: Ligand field stabilization and activation energies revisited: molecular modeling of the thermodynamic and kinetic properties of divalent, first-row aqua complexes. Inorg. Chem. 47, 7377–7388 (2008)
Patel, M.B., Patel, S., Khandelwal, D.P., Bist, H.D.: Vibrational studies and phase transitions in Co(ClO4)2·6H2O and Mn(ClO4)2·6H2O. Chem. Phys. Lett. 101, 93–99 (1983)
Ribar, B., Petrovic, D., Djuric, S., Krstanovic, I.: The crystal structure of hexaquomanganese nitrate. Mn(OH2)6(NO3)2. Z. Krist. 144, 334–340 (1976)
Chevrier, G.: A New example of an arrangement of antiphase domains: investigation by neutron diffraction of deuterated manganese fluosilicate. Acta Cryst. B47, 224–228 (1991)
Iijima, T., Hamada, K., Mizuno, M., Endo, K., Suhara, M.: Molecular dynamics and phase transitions in paramagnetic [Mn(H2O)6][SiF6] investigated by 2H NMR. J. Phys. Chem. Solids 66, 1101–1106 (2005)
Ferraris, G., Jones, D.W., Yerkess, J.: Refinement of the crystal structure of magnesium sulphate heptahydrate (Epsomite) by neutron diffraction. J. Chem. Soc. Dalton. Trans. (1973). doi:10.1039/DT9730000816
Euler, H., Barbier, B., Meents, A., Kirfel, A.: Crystal structure of Tutton’s salts K2[MII(H2O)6](SeO4)2, MII = Co, Ni, Zn and refinement of the crystal structure of potassium hexaaquamagnesium(II) selenate, K2[Mg(H2O)6](SeO4)2. Z. Kristallogr. NCS 224, 351–354 (2009)
Euler, H., Barbier, B., Meents, A., Kirfel, A.: Crystal structure of Tutton’s salts, Rb2[MII(H2O)6](SeO4)2, MII = Mg, Co, Mn, Zn., Z. Kristallogr. NCS 218, 265–268 (2003)
Sham, T.K., Hastings, J.B., Perlman, M.L.: Structure and dynamic behavior of transition-metal ions in aqueous solution: an EXAFS study of electron-exchange reactions. J. Am. Chem. Soc. 102, 5904–5906 (1980)
Beagley, B., Gahan, B., Greaves, G.N., McAuliffe, C.A., White, E.W.: Detection of the concentration dependence of co-ordination to manganese in aqueous MnBr 2 solutions by X-ray absorption spectroscopy. J. Chem. Soc. Chem. Commun. (1985). doi:10.1039/C39850001804
Tajiri, Y.M., Ichihashi, M., Mibuchi, T., Wakita, H.: An X-ray diffraction Investigation of the coordination structure of Mn(II) ions in highly concentrated aqueous MnBr 2 and MnCl2 solutions. Bull. Chem. Soc. Jpn 59, 1155–1159 (1986)
Inada, Y., Hayashi, H., Sugimoto, K., Funahashi, S.: Solvation structures of manganese(II), iron(II), cobalt(II), nickel(II), copper(II), zinc(II), and gallium(III) ions in methanol, ethanol, dimethyl sulfoxide, and trimethyl phosphate as studied by EXAFS and electronic spectroscopies. J. Phys. Chem. A 103, 1401–1406 (1999)
Beagley, B., McAuliffe, C.A., Smith, S.P.B., White, E.W.: EXAFS studies of aqueous solutions of manganese(II) chloride and bromide: structural variations with concentration and interactions with solvent. J. Phys. 3, 7919–7930 (1991)
Chen, Y., Fulton, J.L., Partenheimer, W.: A XANES and EXAFS study of hydration and ion pairing in ambient aqueous MnBr 2 solutions. J. Solution Chem. 34, 993–1007 (2005)
Böttcher, M.E., Usdowski, E.: An estimation of dissociation constants for Mn(II) complexes in aqueous solutions up to 300 °C. Z. Phys. Chem. 167, 81–86 (1990)
Guo, X., Xiao, H.S., Wang, F., Zhang, Y.-H.: Micro-Raman and FTIR spectroscopic observation on the phase transitions of MnSO4 droplets and ionic interactions between Mn2+ and SO4 2−. J. Phys. Chem. A 114, 6480–6486 (2010)
Malatesta, F., Trombella Fanelli, N.: Activity and osmotic coefficients from the emf of liquid membrane cells. IX: Mn(ClO4)2 and MnSO4 in water at 25°C. J. Solution Chem. 29, 685–697 (2000)
Bechtler, A., Breitschwerdt, K.G., Tamm, K.: Ultrasonic relaxation studies in aqueous solutions of 2–2 electrolytes. J. Chem. Phys. 52, 2975–2982 (1970)
Jackopin, L.G., Yeager, E.: Ultrasonic relaxation in manganese sulfate solutions. J. Phys. Chem. 74, 3766–3772 (1970)
Atkinson, G., Kor, S.K.: The kinetics of ion association in manganese sulfate solutions. Results in water, dioxane–water mixtures, and methanol–water mixtures at 25 °C. J. Phys. Chem. 69, 128–133 (1965)
Atkinson, G., Kor, S.K.: The Kinetics of ion association in manganese sulfate solutions. II: thermodynamics of stepwise association in water. J. Phys. Chem. 71, 673–677 (1967)
Vogel, A.I.: A Text-Book of Quantitative Inorganic Analysis, 3rd edn. Longman, London (1961)
Rudolph, W.W., Irmer, G.: Raman and infrared spectroscopic investigations on aqueous alkali metal phosphate solutions and density functional theory calculations of phosphate–water clusters. Appl. Spectrosc. 61, 1312–1327 (2007)
Rudolph, W.W., Fischer, D., Irmer, G.: Vibrational spectroscopy studies and density functional theory calculations in the CO2–water system. Appl. Spectrosc. 60, 130–144 (2006)
Rudolph, W.W., Brooker, M.H., Pye, C.C.: Hydration of lithium ion in aqueous solutions. J. Phys. Chem. 99, 3793–3797 (1995)
Rudolph, W.W., Irmer, G.: Raman and infrared spectroscopic investigation of contact ion pair formation in aqueous cadmium sulfate solutions. J. Solution Chem. 23, 663–674 (1994)
Rudolph, W.: Structure and dissociation of hydrogen sulphate ion in aqueous solution over a broad temperature range: a Raman study. Z. Phys. Chem. 194, 73–95 (1996)
Rudolph, W.W., Irmer, G., Hefter, G.T.: Raman spectroscopic investigation of speciation in MgSO4(aq). Phys. Chem. Chem. Phys. 5, 5253–5261 (2003)
Rudolph, W.W.: Raman and infrared spectroscopic investigation of speciation in BeSO4(aq). J. Solution Chem. 39, 1039–1059 (2010)
Helm, L., Merbach, A.E.: Water exchange in metal ions: experiments and simulations. Coord. Chem. Rev. 187, 151–181 (1999)
Loeffler, H.H., Mohammed, A.M., Inada, Y., Funahashi, S.: Water exchange dynamics of manganese(II), cobalt(II), and nickel(II) ions in aqueous solution. J. Comput. Chem. 27, 1944–1949 (2006)
Rudolph, W.W., Irmer, G.: Hydration of the calcium(II) ion in an aqueous solution of common anions (CIO4 −, Cl−, Br−, and NO3 −). J. Chem. Soc., Dalton Trans. 42, 3919–3935 (2013)
Rudolph, W.W., Irmer, G.: Hydration and speciation studies of Mn2+ in aqueous solution with simple monovalent anions (CIO4 −, NO3 −, Cl−, Br−). J. Chem. Soc., Dalton Trans. 42, 14460–14472 (2013)
Rudolph, W., Schönherr, S.: I. Zur schwingungsspektroskopischen Charakterisierung des Hexaquoaluminium(III)-komplexions. Z. Phys. Chem. (Leipzig) 270, 1121–1134 (1989)
Rudolph, W.W., Mason, R., Pye, C.C.: Aluminium(III) hydration in aqueous solution. A Raman spectroscopic investigation and an ab initio molecular orbital study of aluminium(III) water clusters. Phys. Chem. Chem. Phys. 2, 5030–5040 (2000)
Rudolph, W.W., Pye, C.C.: Gallium(III) hydration in aqueous solution of perchlorate, nitrate and sulfate. Raman and 71-Ga NMR spectroscopic studies and ab initio molecular orbital calculations of gallium(III) water clusters. Phys. Chem. Chem. Phys. 4, 4319–4327 (2002)
Rudolph, W.W., Fischer, D., Tomney, M.R., Pye, C.C.: Indium(III) hydration in aqueous solutions of perchlorate, nitrate and sulfate. Raman and Infrared spectroscopic studies and ab initio molecular orbital calculations on indium(III) water clusters. Phys. Chem. Chem. Phys. 6, 5145–5155 (2004)
Pye, C.C., Rudolph, W.W.: An ab initio and Raman investigation of magnesium(II) hydration. J. Phys. Chem. A 102, 9933–9943 (1998)
Rudolph, W.W., Brooker, M.H., Tremaine, P.: Raman spectroscopic investigation of aqueous FeSO4 in neutral and acidic solutions from 25 °C to 303 °C: inner- and outer-sphere complexes. J. Solution Chem. 26, 757–777 (1997)
Rudolph, W.W., Pye, C.C.: Zinc(II) hydration in aqueous solution. A Raman spectroscopic investigation and an ab initio molecular orbital study. Phys. Chem. Chem. Phys. 1, 4583–4593 (1999)
Nakamoto, K.: Infrared Spectra of Inorganic and Coordination Compounds, 2nd edn. Wiley, New York (1970)
Nakagawa, I., Shimanouchi, T.: Infrared absorption spectra of aquo complexes and the nature of co-ordination bonds. Spectrochim. Acta 20, 429–439 (1964)
Pearson, R.G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)
Bergström, P.A., Lindgren, J., Kristiansson, O.: An IR study of the hydration of perchlorate, nitrate, iodide, bromide, chloride and sulfate anions in aqueous solution. J. Phys. Chem. 95, 8575–8580 (1991)
Walrafen, G.E., Hokmabadi, M.S., Yang, W.-H., Chu, Y.C., Monosmith, B.: Collision-induced Raman scattering from water and aqueous solutions. J. Phys. Chem. 93, 2909–2917 (1989)
Brooker, M.H., Hancock, G., Rice, B.C., Shapter, J.: Raman frequency and intensity studies of liquid H2O, H 182 O and D2O. J. Raman Spectrosc. 20, 683–694 (1989)
Kanno, H., Hiraishi, J.: Existence of “nearly free” hydrogen bonds in glassy aqueous calcium perchlorate solutions. Chem. Phys. Lett. 83, 452–454 (1981)
Musinu, A., Paschina, G., Piccaluga, G.: On the structure of the NH4 + ion in aqueous solution. Chem. Phys. Lett. 80, 163–167 (1981)
Marcus, Y.: Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1370 (2009)
Pye, C.C., Rudolph, W.W.: An ab initio and Raman investigation of sulfate ion hydration. J. Phys. Chem. A 105, 905–912 (2001)
Rudolph, W.W.: Hydration and water–ligand replacement in aqueous cadmium(II) sulfate solution. A Raman and infrared study. Faraday Trans. 92, 489–499 (1998)
Rudolph, W., Schönherr, S.: II. Zur Sulfatokomplexbildung in Aluminiumsulfat-Lösungen und Hydratschmelzen. Z. Phys. Chem. 172, 31–48 (1991)
Eigen, M., Tamm, K.: Schallabsorption in Elektrolytlösungen als Folge chemischer Relaxation. I. Relaxationstheorie der mehrstufigen Dissoziation. Z. Elektrochem. 66, 93–107 (1962)
Eigen, M., Tamm, K.: Schallabsorption in Elektrolytlösungen als Folge chemischer Relaxation. II. Meßergebnisse und Relaxationsmechanismen für 2-2–wertigen Elektrolyte. Z. Elektrochem. 66, 107–121 (1962)
James, D.W., Frost, R.L.: Ion–ion–solvent interactions in solution. Aqueous solutions of nitrates of cations from Groups 2A and 3A. Aust. J. Chem. 35, 1793–1806 (1982)
James, D.W., Carrick, M.T., Frost, R.L.: Structure of aqueous solutions: fourier transformation and band component analysis in magnesium nitrate solutions. J. Raman Spectrosc. 13, 115–119 (1982)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rudolph, W.W., Irmer, G. Raman Spectroscopic Investigation of Speciation in MnSO4(aq). J Solution Chem 43, 465–485 (2014). https://doi.org/10.1007/s10953-014-0145-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-014-0145-8