Skip to main content

The Hydrolysis of Hydroxamic Acid Complexants in the Presence of Non-oxidizing Metal Ions 3: Ferric Ions at Elevated Temperatures

Abstract

The hydrolysis of acetohydroxamic acid (AHA) was investigated both in the absence and presence of ferric ions at the range of temperatures (293–333 K). The data were then analyzed using a previously published mathematical model to determine the Arrhenius factor (A) and activation energy (E a) of the hydrolysis reactions of free AHA and AHA bound to iron in the form of the monoacetohydroxamatoiron(III) complex. The Arrhenius factor and activation energy were found to be 4.24 × 109 dm3·mol−1·s−1 and 80.1 kJ·mol−1 respectively for the hydrolysis of free AHA in solution and 2.44 × 1011 dm3·mol−1·s−1 and 89.6 kJ·mol−1 respectively for the hydrolysis of iron-bound AHA, suggesting a difference in the mechanism for the hydrolysis of the free and complexed ligand. This was further investigated using quantum mechanical calculations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Muri, E.M.F., Nieto, M.J., Sindelar, R.D., Williamson, J.S.: Hydroxamic acids as pharmacological agents. Curr. Med. Chem. 9, 1631–1653 (2002)

    Article  CAS  Google Scholar 

  2. Desaraju, P., Winston, A.: Synthesis and iron complexation studies of bis-hydroxamic acids. J. Coord. Chem. 14, 241–248 (1986)

    Article  CAS  Google Scholar 

  3. Carrott, M.J., Fox, O.D., Maher, C.J., Mason, C., Taylor, R.J., Sinkov, S.I., Choppin, G.R.: Solvent extraction behaviour of plutonium(IV) ions in the presence of simple hydroxamic acids. Solv. Extr. Ion Exch. 25, 723–746 (2007)

    Article  CAS  Google Scholar 

  4. Ghosh, K.K.: Kinetic and mechanistic aspects of acid catalysed hydrolysis of hydroxamic acids. Indian J. Chem. 36B, 1089–1102 (1997)

    CAS  Google Scholar 

  5. Vernon, F.: Chelating ion exchangers. The synthesis and use of poly(hydroxamic acid) resins. Pure Appl. Chem. 54, 2151–2158 (1982)

    Article  CAS  Google Scholar 

  6. Raymond, K.N., Freeman, G.E., Kappel, M.J.: Actinide-specific complexing agents: their structural and solution chemistry. Inorg. Chim. Acta 84, 193–204 (1984)

    Article  Google Scholar 

  7. Renshaw, J.C., Robson, G.D., Trinci, A.P.J., Wiebe, M.G., Livens, F.R., Collinson, D., Taylor, R.J.: Fungal siderophores: structures, functions and applications. Mycol. Res. 106, 1123–1142 (2002)

    Article  CAS  Google Scholar 

  8. Monzyk, B., Crumbliss, A.L.: Mechanism of ligand substitution on high-spin iron(III) by hydroxamic acid chelators. Thermodynamic and kinetic studies on the formation and dissociation of a series of monohydroxamatoiron(III) complexes. J. Am. Chem. Soc. 101, 6203–6213 (1979)

    Article  CAS  Google Scholar 

  9. Crumbliss, A.L., Harrington, J.M.: Iron sequestration by small molecules: thermodynamic and kinetic studies of natural siderophores and synthetic model compounds. Adv. Inorg. Chem. 61, 179–250 (2009)

    Article  CAS  Google Scholar 

  10. Albrecht-Gary, A.M., Crumbliss, A.L.: The coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release. In: Sigel, A., Sigel, H. (eds.) Metal Ions in Biological Systems, vol. 35: Iron Transport and Storage in Microorganisms, Plants and Animals, pp. 239–327. Marcel Dekker, New York (1998)

    Google Scholar 

  11. Birkett, J.E., Carrott, M.J., Fox, O.D., Jones, C.J., Maher, C.J., Roube, C.V., Taylor, R.J., Woodhead, D.A.: Recent developments in the PUREX process for nuclear fuel reprocessing: complexant based stripping for uranium–plutonium separation. Chimia 59, 898–904 (2005)

    Article  CAS  Google Scholar 

  12. Andrieux, F.P.L., Boxall, C., Taylor, R.J.: The hydrolysis of hydroxamic acid complexants in the presence of non-oxidising metal ions 1: ferric ions. J. Solution Chem. 36, 1201–1217 (2007)

    Article  CAS  Google Scholar 

  13. Andrieux, F.P.L., Boxall, C., Mason, C., Taylor, R.J.: The hydrolysis of hydroxamic acid complexants in the presence of non-oxidising metal ions 2: neptunium(IV) ions. J. Solution Chem. 37, 215–232 (2008)

    Article  CAS  Google Scholar 

  14. Andrieux, F.P.L., Boxall, C., Taylor, R.J.: Acetohydroxamatoiron(III) complexes thermodynamics of formation and temperature dependent speciation. J. Solution Chem. 37, 1511–1527 (2008)

    Article  CAS  Google Scholar 

  15. Roos, Y.H.: Phase transitions and transformations in food systems. In: Heldmann, D.R., Lund, D.B. (eds.) Handbook of Food Engineering, 2nd edn, p. 328. CRC, Boca Raton (2006)

    Google Scholar 

  16. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09. Gaussian, Wallingford (2009)

    Google Scholar 

  17. Miertŭs, S., Scrocco, E., Tomasi, J.: Electrostatic interaction of a solute with a continuum—a direct utilization of abinitio molecular potentials for the prevision of solvent effects. Chem. Phys. 55, 117–129 (1981)

    Article  Google Scholar 

  18. Taylor, R.J., May, I.: The reduction of actinide ions by hydroxamic acids. Czech. J. Phys. 49, 617–621 (1999)

    Article  CAS  Google Scholar 

  19. Chung, Y.C., Lee, E.H.: Kinetics of the hydrolysis of acetohydroxamic acid in a nitric acid solution. J. Ind. Eng. Chem. 12, 962–966 (2006)

    CAS  Google Scholar 

  20. Mane, B.S., Jagdale, M.H.: Kinetics of the acid catalysed hydrolysis of hydroxamic acids. React. Kinet. Catal. Lett. 6, 417–424 (1977)

    Article  CAS  Google Scholar 

  21. Crumbliss, A.L.: Aqueous solution equilibrium and kinetic studies of iron siderophore and model siderophore complexes, Chap. 7. In: Winkelmann, G. (ed.) Handbook of Microbial Iron Chelates. CRC, Boca Raton (1991)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Nuclear Laboratory and the Nuclear Decommissioning Authority (NDA) for financial support. CB is supported by the Lloyd’s Register Foundation (LRF), a UK Registered charity and sole shareholder of Lloyd’s Register Group Ltd, which invests in science, engineering and technology for public benefit worldwide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice P. L. Andrieux.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andrieux, F.P.L., Boxall, C., Steele, H.M. et al. The Hydrolysis of Hydroxamic Acid Complexants in the Presence of Non-oxidizing Metal Ions 3: Ferric Ions at Elevated Temperatures. J Solution Chem 43, 608–622 (2014). https://doi.org/10.1007/s10953-014-0142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0142-y

Keywords