Skip to main content

Advertisement

Log in

Thermal Conductivity of Aqueous CaCl2 Solutions at High Temperatures and High Pressures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The thermal conductivities of four aqueous CaCl2 solutions of (5, 10, 15, and 20) mass% have been measured with a coaxial-cylinder (steady-state) technique. Measurements were performed in the temperature range from (293.15 to 573.15) K and at pressures up to 40 MPa. The expanded uncertainty of thermal conductivity, pressure, temperature, and concentration measurements at the 95 % confidence level with a coverage factor of k = 2 were estimated to be 2, 0.05 %, 30 mK, and 0.01 %, respectively. Isobaric temperature maxima of the measured thermal conductivities are found around 423 K. Existing thermal conductivity correlation models for aqueous salt solutions were examined using the measured results for CaCl2(aq). The measured thermal conductivity data are also compared with the reported data and the values calculated from various prediction techniques. The agreement between measured and predicted values of the thermal conductivity of CaCl2(aq) is within 0.3 %. A wide-ranging correlation model was developed using the measured thermal conductivity data and the new IAPWS formulation for the thermal conductivity of pure water. The average absolute deviation between the measured and calculated values of thermal conductivity is 0.21 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Magomedov, U.B.: Thermal conductivity of aqueous electrolyte solutions. Thermophysical properties of individual substances and mixtures, pp. 61–66. Institute of Physics DSC Russian Academy of Science, Makhachkala (1989)

    Google Scholar 

  2. Pepinov, R.I., Guseynov, G.M.: Thermal conductivity of electrolyte solutions of LiCl, KCl, and CaCl2 at high temperatures and high pressures. Geothermy, Geological and Thermophysical Problems, pp. 204–211. Institute of Physics DSC Russian Academy of Science, Makhachkala (1992)

    Google Scholar 

  3. Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of aqueous solutions of CaCl2 and MgCl2 at high pressures. In: White, H.J., Sengers, J.V., Neumann, D.B., Bellows, J.C. (eds.) Proceedings of 12th international conference on properties water and steam, pp. 549–557. Begell House, New York (1995)

  4. Magomedov, U.B.: Thermal conductivity of salt solutions at high temperatures and high pressures. Ph.D. Thesis. Power Engineering Institute, Moscow (1995)

  5. Kapustinskii, A.F., Ruzavin, I.I.: Thermal conductivity of aqueous solutions of electrolytes. Russ. J. Phys. Chem. 29, 2222–2230 (1955)

    CAS  Google Scholar 

  6. Vargaftik, N.B., Osminin, Y.P.: Thermal conductivity of aqueous salt, acid, and alkali solutions. Teploenergetika 7, 15–16 (1956)

    Google Scholar 

  7. Chernen’kaya, E.I., Vernigora, G.A.: Experimental study of the thermal conductivity of aqueous salt solutions and ammonia at 25 and 50 °C. Russ. J. Appl. Chem. 45, 1704–1707 (1972)

    Google Scholar 

  8. Wakeham, W.A.: The application of the transient hot-wire method to the measurements of the thermal conductivity of aqueous salt solutions. In: Sychev, V.V., Aleksandrov, A.A. (eds.) Proceedings of the 10th international conference on the properties of water and steam, vol. 2, pp. 219–227. MIR, Moscow (1984)

  9. Assael, M.J., Charitidou, E., Stassis, J.C., Wakeham, W.A.: Absolute measurements of the thermal conductivity of aqueous chloride salt solutions. Ber. Bunsenges. Phys. Chem. 93, 887–892 (1989)

    Article  CAS  Google Scholar 

  10. Riedel, L.: The heat conductivity of aqueous solutions of strong electrolytes. Chem. Ing. Tech. 23, 59–64 (1951)

    Article  CAS  Google Scholar 

  11. Chiquillo, A.: Measurements of the relative thermal conductivity of aqueous salt solutions with a transient hot-wire method. Juris Druck and Verlag, Zurich (1967)

    Google Scholar 

  12. Aseyev, G.G.: Electrolytes. Properties of solutions. Methods for calculation of multicomponent systems and experimental data on thermal conductivity and surface tension. Begell House Inc, New York (1998)

    Google Scholar 

  13. Assael, M.J., Charitidou, E., Nieto de Castro, C.A.: Absolute measurements of the thermal conductivity of alcohols by the transient hot-wire technique. Int. J. Thermophys. 9, 813–824 (1988)

    Article  CAS  Google Scholar 

  14. Akhundov, T.C., Iskenderov, A.I., Akhmedova, L.A.: Thermal conductivity of aqueous solutions of Ca(NO3)2. Izv. VuzovSer. Neft i Gas 3, 49–52 (1994)

    Google Scholar 

  15. Akhundov, T.C., Iskenderov, A.I., Akhmedova, L.A.: Thermal conductivity of aqueous solutions of Mg(NO3)2. Izv. VuzovSer. Neft i Gas 1, 56–58 (1995)

    Google Scholar 

  16. Abdulagatov, I.M., Akhmedova-Azizova, L.A., Azizov, N.D.: Thermal conductivity of binary aqueous NaBr and KBr and ternary H2O + NaBr + KBr solutions at temperatures from 294 to 577 K and pressures up to 40 MPa. J. Chem. Eng. Data 49, 1727–1737 (2004)

    Article  CAS  Google Scholar 

  17. Abdulagatov, I.M., Akhmedova-Azizova, L.A., Azizov, N.D.: Thermal conductivity of aqueous Sr(NO3)2 and LiNO3 solutions at high temperatures and high pressures. J. Chem. Eng. Data 49, 688–704 (2004)

    Article  CAS  Google Scholar 

  18. Akhmedova-Azizova, L.A., Abdulagatov, I.M.: Thermal conductivity of aqueous K2CO3 solutions at high temperatures. J. Solution Chem. 38, 1015–1028 (2009)

    Article  CAS  Google Scholar 

  19. Akhmedova-Azizova, L.A.: Thermal conductivity and viscosity of aqueous Mg(NO3)2, Sr(NO3)2, Ca(NO3)2, and Ba(NO3)2 solutions. J. Chem. Eng. Data 51, 2088–2090 (2006)

    Article  CAS  Google Scholar 

  20. Akhmedova-Azizova, L.A., Babaeva, S.Sh.: Thermal conductivity of aqueous Na2CO3 solutions at high temperatures and high pressures. J. Chem. Eng. Data 53, 462–465 (2008)

    Article  CAS  Google Scholar 

  21. Abdulagatov, I.M., Azizov, N.D.: Thermal conductivity and viscosity of the aqueous K2SO4 solutions at temperatures from 298 to 573 K and at pressures up to 30 MPa. Int. J. Thermophys. 26, 593–635 (2005)

    Article  CAS  Google Scholar 

  22. Akhmedova-Azizova, L.A., Abdulagatov, I.M., Bruno, T.J.: Effect of RP-1 compositional variability on thermal conductivity at high temperatures and high pressures. Energy Fuels 23, 4522–4528 (2009)

    Article  CAS  Google Scholar 

  23. Abdulagatov, I.M., Assael, M., Assael, M.: Thermal conductivity. In: Valyashko, V.M. (ed.) Hydrothermal properties of Materials. Experimental data on aqueous phase equilibria and solution properties at elevated temperatures and pressures, Chap. 5, pp. 227–248. Wiley, London (2009)

    Google Scholar 

  24. Gershuni, G.Z.: Thermal convection in the space between vertical coaxial cylinders. Dok. Akad. Nauk USSR 86, 697–698 (1952)

    Google Scholar 

  25. Rastorguev, Yu.L., Nemzer, B.G.: Experimental apparatus for the study of thermal conductivity of high temperature working fluids. Teploenergetika 12, 78–82 (1968)

    Google Scholar 

  26. Huber, M.L., Perkins, R.A., Friend, D.G., Sengers, J.V., Assael, M.J., Metaxa, I.N., Miyagawa, K., Hellmann, R., Vogel, E.: New international formulation for the thermal conductivity of H2O. J. Phys. Chem. Ref. Data 41, 1–23 (2012)

    Article  Google Scholar 

  27. Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of aqueous solutions of K2CO3 and NaI in the temperature range 298–473 K at pressures up to 100 MPa. In: Proceedings of 4th Asian Thermophysical Properties Conference, pp. 499–502. Tokyo (1995)

  28. Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of aqueous solutions of NaCl and KCl at high pressures. Int. J. Thermophys. 15, 401–413 (1994)

    Article  CAS  Google Scholar 

  29. Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of aqueous KI and KBr solutions at high temperatures and high pressures. J. Solution Chem. 30, 223–235 (2001)

    Article  CAS  Google Scholar 

  30. Abdulagatov, I.M., Abdulagatov, A.I., Kamalov, A.N.: Thermophysical properties of pure fluids and aqueous systems at high temperatures and pressures, p. 1301. Begell House Inc, New York (2005)

    Google Scholar 

  31. Horvath, A.L.: Handbook of aqueous electrolyte solutions: physical properties, estimation methods and correlation methods. Ellis Horwood, West Sussex (1985)

    Google Scholar 

  32. DiGuilio, R.M., Teja, A.S.: Thermal conductivity of aqueous salt solutions at high temperatures and high concentrations. Ind. Eng. Chem. Res. 31, 1081–1085 (1992)

    Article  CAS  Google Scholar 

  33. DiGuilio, R.M., Lee, R.J., Jeter, S.M., Teja, A.S.: Properties of lithium bromide–water solutions at high temperatures and concentrations–I. Thermal conductivity. ASHRAE Trans. 96, 702–708 (1990)

    Google Scholar 

  34. Nagasaka, Y., Okada, H., Suziki, J., Nagashima, A.: Absolute measurements of the thermal conductivity of aqueous NaCl solutions at pressures up to 40 MPa. Ber. Bunsenges. Phys. Chem. 87, 859–866 (1983)

    Article  CAS  Google Scholar 

  35. Matsunaga, N., Nagashima, A.: Transport properties of liquid and gaseous D2O over a wide range of temperature and pressure. J. Phys. Chem. Ref. Data 12, 933–966 (1983)

    Article  CAS  Google Scholar 

  36. Kawamata, K., Nagasaka, Y., Nagashima, A.: Measurements of the thermal conductivity of aqueous LiBr solutions at pressures up to 40 MPa. Int. J. Thermophys. 9, 317–329 (1988)

    Article  CAS  Google Scholar 

  37. Nagasaka, Y., Hiraiwa, H., Nagashima, A.: Measurement of the thermal conductivity of liquid D2O by the transient hot-wire method. In: Pichal. M., Sifner, O. (eds.) Proceedings of the 11th International Conference on the Properties of Water and Steam, pp. 125–131 Hemisphere. New York (1989)

  38. Ramires, M.L.V., Nieto de Castro, C.A.: Thermal conductivity of aqueous sodium chloride solutions. J. Chem. Eng. Data 39, 186–190 (1994)

    Article  CAS  Google Scholar 

  39. Ramires, M.L.V., Nieto de Castro, C.A.: Thermal conductivity of aqueous potassium chloride solutions. Int. J. Thermophys. 21, 671–679 (2000)

    Article  CAS  Google Scholar 

  40. Alloush, A., Gosney, W.B., Wakeham, W.A.: A transient hot-wire instrument for thermal conductivity measurements in electrically conducting liquids at elevated temperatures. Int. J. Thermophys. 3, 225–267 (1982)

    Article  CAS  Google Scholar 

  41. Pepinov, R.I., Guseinov, G.M.: Thermal conductivity of lithium chloride aqueous solution at high temperatures. Russ. J. Phys. Chem. 67, 1101–1103 (1993)

    CAS  Google Scholar 

  42. Pepinov, R.I., Guseinov, G.M.: Thermal conductivity of aqueous KCl solutions at temperatures from 20 to 340 °C. Russ. High Temp. 29, 605–607 (1991)

    CAS  Google Scholar 

  43. Ozbek, H., Pillips, S.L.: Thermal conductivity of aqueous sodium chloride solutions from 20 to 330 °C. J. Chem. Eng. Data 25, 263–267 (1980)

    Article  CAS  Google Scholar 

  44. Dietz, F.J., De Groot, J.J., Franck, E.U.: Water and steam—their properties and current industrial applications. In: Straub, J., Scheffler, K. (eds.) Proceedings of the 9th international conference on the properties of steam, pp. 425–438. Pergamon, Oxford (1980)

  45. Abdulagatov, I.M., Magomedov, U.B.: Effect of temperature and pressure on the thermal conductivity of aqueous CaI2 solutions. High Temp.-High Press. 32, 599–611 (2000)

    Article  CAS  Google Scholar 

  46. Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of aqueous BaI2 solutions in the temperature range 293–473 K and the pressure range 0.1–100 MPa. Fluid Phase Equilib. 171, 243–252 (2000)

    Article  CAS  Google Scholar 

  47. Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of aqueous ZnCl2 solutions at high temperatures and high pressures. Ind. Eng. Chem. Res. 37, 4883–4888 (2001)

    Article  Google Scholar 

  48. Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of pure water and aqueous SrBr2 solutions at high temperatures and high pressures. High-Temp. High-Press. 35/36, 149–168 (2003/2004)

    Article  CAS  Google Scholar 

  49. Krönert, P., Schuberthy, H.: Behavior of heat-conductivity of some phosphate-solutions and nitrate-solutions. Chem.-Technol. 29, 552–563 (1977)

    Google Scholar 

  50. Losenicky, Z.: Thermal conductivity of aqueous solutions of alkali hydroxides. J. Phys. Chem. 73, 451–452 (1969)

    Article  CAS  Google Scholar 

  51. Bleazard, J.G., DiGuilio, R.M., Teja, A.S.: Thermal conductivity of lithium bromide–water solutions. AIChE Symp. Ser. 298, 23–28 (1994)

    CAS  Google Scholar 

  52. Bleazard, J.G., Teja, A.S.: Thermal conductivity of electrically conducting liquids by the transient hot-wire method. J. Chem. Eng. Data 40, 732–737 (1995)

    Article  CAS  Google Scholar 

  53. Ganiev, Yu., Musoyan, M.O., Rastorguev, Ya.V., Grigor’ev, B.A.: The thermal conductivity of water and aqueous solutions of NaCl in the range of temperatures 20–400 °C and pressures up to 100 MPa. In: Pichal, M., Shifner, O. (eds.) Proceedings of the 11th international conference on the properties of water and steam, pp. 132–139. Hemisphere, NY (1989)

  54. Schmidt, M., Lipson, H.: Eureqa Formulize (Version 0.97) [Computer software]. Nutonian Inc., Cambridge, MA, retrieved June 14 (2012); available from http://www.nutonian.com/

  55. Falkenhagen, H., Dole, M.: Die innere reibung von elektrolytischen losungen und ihre deutung nach der debyeschen theorie. Z. Phys. 30, 611–622 (1929)

    CAS  Google Scholar 

  56. Onsager, L., Fuoss, R.M.: Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes. J. Phys. Chem. 36, 2689–2778 (1932)

    Article  CAS  Google Scholar 

  57. Onsager, L.: The theory of electrolytes. Z. Phys. 27, 388–392 (1926)

    CAS  Google Scholar 

  58. Debye, P., Hückel, H.: Bemerkungen zu einem satze über die kataphoretische wanderungsg eschwindigkeit suspendierter teilchen. Z. Phys. 25, 49–52 (1924)

    Google Scholar 

  59. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  60. Falkenhagen, H.: Theorie der Elektrolyte. S. Hirzel, Leipzig (1971)

    Google Scholar 

  61. Falkenhagen, H.: Quantitative limiting law of the viscosity of strong binary electrolytes. Z. Phys. 32, 745–764 (1931)

    CAS  Google Scholar 

  62. Abdulagatov, I.M., Zeinalova, A.A., Azizov, N.D.: Viscosity of aqueous Na2SO4 solutions at temperatures from 298 to 573 K and at pressures up to 40 MPa. Fluid Phase Equilib. 227, 57–70 (2005)

    Article  CAS  Google Scholar 

  63. Abdulagatov, I.M., Azizov, N.D.: Viscosity of aqueous LiI solutions at 293–525 K and 0.1–40 MPa. Thermochim. Acta 439, 8–20 (2005)

    Article  CAS  Google Scholar 

  64. Abdulagatov, I.M., Zeinalova, A.B., Azizov, N.D.: Experimental viscosity B-coefficients for aqueous LiCl solutions. J. Mol. Liq. 126, 75–88 (2006)

    Article  CAS  Google Scholar 

  65. Abdulagatov, I.M., Azizov, N.D.: Viscosity of aqueous calcium chloride solutions at high temperatures and high pressures. Fluid Phase Equilib. 240, 204–219 (2006)

    Article  CAS  Google Scholar 

  66. Abdulagatov, I.M., Azizov, N.D.: Experimental study of the effect of temperature, pressure, and concentration on the viscosity of aqueous NaBr solutions. J. Solution Chem. 35, 705–738 (2006)

    Article  CAS  Google Scholar 

  67. Abdulagatov, I.M., Azizov, N.D.: PVTx measurements and partial molar volumes for aqueous Li2SO4 solutions at temperatures from 297 to 573 K and pressures up to 40 MPa. Int. J. Thermophys. 24, 1581–1610 (2003)

    Article  CAS  Google Scholar 

  68. Abdulagatov, I.M., Azizov, N.D.: Densities and apparent molar volumes of aqueous NaNO3 solutions at temperatures from 292 to 573 K and at pressures up to 30 MPa. J. Solution Chem. 32, 573–599 (2003)

    Article  CAS  Google Scholar 

  69. Abdulagatov, I.M., Azizov, N.D.: Densities and apparent molar volumes of aqueous H3BO3 solutions at temperatures from 296 to 573 K and at pressures up to 48 MPa. J. Solution Chem. 33, 1305–1331 (2004)

    Article  CAS  Google Scholar 

  70. Abdulagatov, I.M., Azizov, N.D.: Densities and apparent molar volumes of aqueous LiI solutions at temperatures from (296 to 600) K and at pressures up to 30 MPa. J. Chem. Thermodyn. 36, 829–843 (2004)

    Article  CAS  Google Scholar 

  71. Abdulagatov, I.M., Azizov, N.D.: Densities, apparent molar volumes, and viscosities of concentrated aqueous NaNO3 solutions at temperatures from 298 to 607 K and at pressures up to 30 MPa. J. Solution Chem. 34, 645–685 (2005)

    Article  CAS  Google Scholar 

  72. Aseyev, G.G., Zaytsev, I.D.: Volumetric properties of electrolyte solutions. Estimation methods and experimental data. Begell House Inc, New York (1996)

    Google Scholar 

Download references

Acknowledgments

Abdulagatov I.M. thanks the Applied Chemicals and Materials Division at the National Institute of Standards and Technology for the opportunity to work as a Guest Researcher at NIST during the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmutdin M. Abdulagatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhmedova-Azizova, L.A., Abdulagatov, I.M. Thermal Conductivity of Aqueous CaCl2 Solutions at High Temperatures and High Pressures. J Solution Chem 43, 421–444 (2014). https://doi.org/10.1007/s10953-014-0141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0141-z

Keywords

Navigation