Skip to main content
Log in

Chemical Thermodynamics: A Journey of Many Vistas

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Chemical thermodynamics is of central importance in chemistry, physics, the biosciences and engineering. It is a highly formalized scientific discipline of enormous generality, providing a mathematical framework of equations (and a few inequalities), which yields exact relations between macroscopically observable thermodynamic equilibrium properties of matter and restricts the course of any natural process. While these aspects alone are already of the greatest value for practical applications, in conjunction with judicially selected molecular-based models of material behavior, that is to say by using concepts from statistical mechanics, experimentally determined thermodynamic quantities contribute decisively towards a better understanding of molecular interactions and hence of real macroscopic systems. A plenary lecture affords the lecturer an opportunity to survey a few reasonably large sub-areas of the fields he works/worked in and to reflect on them from the perspective of many years of research. The general subject I selected for this review, i.e. chemical thermodynamics of liquid nonelectrolytes (pure or mixed), is vast. Over the last decades, the field’s impressive growth has been stimulated by the continuously increasing need for thermophysical property data and phase equilibrium data in the applied sciences, and it has greatly profited by advances in experimental techniques, by advances in the theory of liquids in general, and by advances in computer simulations of reasonably realistic model systems in particular. Specifically, I shall focus on just three topics of increasing complexity: (1) heat capacities and related quantities of fairly simple molecular liquids, predominantly at or near orthobaric conditions; (2) chemical thermodynamics of binary liquid mixtures containing one strongly dipolar aprotic component; (3) caloric properties of dilute solutions of nonelectrolytes, with emphasis on properties of aqueous solutions at infinite dilution (which are of importance in biophysical chemistry).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wilhelm, E., Schano, R., Becker, G., Findenegg, G.H., Kohler, F.: Molar heat capacity at constant volume. Binary mixtures of 1,2-dichloroethane and 1,2-dibromoethane with cyclohexane. Trans. Faraday Soc. 65, 1443–1455 (1969)

    CAS  Google Scholar 

  2. Wilhelm, E., Rott, E., Kohler, F.: The heat capacities of the mixture trichlorobenzene–hexane. In: Proceedings of 1st International Confference on Calorimetry and Thermodynamics, Warsaw, Poland, pp. 767–771, 31 Aug–4 Sept (1969)

  3. Wilhelm, E., Zettler, M., Sackmann, H.: Molwärmen binärer systeme aus cyclohexan, kohlenstofftetrachlorid, siliziumtetrachlorid und zinntetrachlorid. Ber. Bunsenges. Physik. Chem. 78, 795–804 (1974)

    CAS  Google Scholar 

  4. Wilhelm, E., Grolier, J.-P.E., Karbalai Ghassemi, M.H.: Molar heat capacities of binary liquid mixtures: 1,2-dichloroethane + benzene, +toluene, and +p-xylene. Ber. Bunsenges. Physik. Chem. 81, 925–930 (1977)

    CAS  Google Scholar 

  5. Grolier, J.-P.E., Wilhelm, E., Hamedi, M.H.: Molar heat capacity and isothermal compressibility of binary liquid mixtures: carbon tetrachloride + benzene, carbon tetrachloride + cyclohexane, and benzene + cyclohexane. Ber. Bunsenges. Physik. Chem. 82, 1282–1290 (1978)

    CAS  Google Scholar 

  6. Wilhelm, E.: Thermodynamic properties of nonelectrolyte solutions. High Temp. High Press. 29, 613–630 (1997)

    CAS  Google Scholar 

  7. Wilhelm, E.: The fascinating world of pure and mixed nonelectrolytes. Pure Appl. Chem. 77, 1317–1330 (2005)

    CAS  Google Scholar 

  8. Chorążewski, M.A., Hrynko, M., Góralski, P., Grolier, J.-P.E., Wilhelm, E.: Thermodynamic and acoustic properties of mixtures of 1,6-dichlorohexane with heptane from 293 K to 313 K. J. Chem. Eng. Data 55, 1700–1710 (2010)

    Google Scholar 

  9. Wilhelm, E.: What you always wanted to know about heat capacities, but were afraid to ask. J. Solution Chem. 39, 1777–1818 (2010)

    CAS  Google Scholar 

  10. Grolier, J.-P.E., Inglese, A., Wilhelm, E.: Excess molar heat capacities of (1,4-dioxane + an n-alkane): an unusual composition dependence. J. Chem. Thermodyn. 16, 67–71 (1984)

    CAS  Google Scholar 

  11. Inglese, A., Grolier, J.-P.E., Wilhelm, E.: Excess volumes and excess heat capacities of oxane + cyclohexane and 1,4-dioxane + cyclohexane. Fluid Phase Equilib. 15, 287–294 (1984)

    CAS  Google Scholar 

  12. Wilhelm, E.: Thermodynamics of solutions: selected aspects. Thermochim. Acta 162, 43–57 (1990)

    CAS  Google Scholar 

  13. Grolier, J.-P.E., Wilhelm, E.: Calorimetry, densitometry and ultrasonics: recent contributions to the thermodynamics of fluids. Pure Appl. Chem. 63, 1427–1434 (1991)

    CAS  Google Scholar 

  14. Wilhelm, E., Roux-Desgranges, G., Grolier, J.-P.E.: Thermodynamics of liquid mixtures containing alkyl alkanoates: a survey. Calorim. Anal. Therm. 26, 107–112 (1995)

    CAS  Google Scholar 

  15. Lainez, A., Lopez, M.R., Caceres, M., Nuñez, J., Rubio, R.G., Grolier, J.-P.E., Wilhelm, E.: Heat capacities and concentration fluctuations in mixtures of 1,2-dibromoethane + alkane. J. Chem. Soc. Faraday Trans. I 91, 1941–1947 (1995)

    CAS  Google Scholar 

  16. Wilhelm, E., Egger, W., Vencour, M., Roux, A.H., Polednicek, M., Grolier, J.-P.E.: Thermodynamics of liquid mixtures consisting of a very polar and a nonpolar aromatic: (benzonitrile + benzene or toluene). J. Chem. Thermodyn. 39, 1509–1532 (1998)

    Google Scholar 

  17. Wilhelm, E., Grolier, J.-P.E.: Heat capacities and related properties of liquid mixtures. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 54–85. The Royal Society of Chemistry/IACT & IUPAC, Cambridge (2010)

    Google Scholar 

  18. Wilhelm, E., Battino, R.: The solubility of gases in liquids. 1. The solubility of a series of fluorine-containing gases in several non-polar solvents. J. Chem. Thermodyn. 3, 379–392 (1971)

    CAS  Google Scholar 

  19. Wilhelm, E., Battino, R.: The solubility of gases in liquids. 4. Calculations on gas solubilities in hexafluorobenzene and benzene. J. Chem. Thermodyn. 3, 761–768 (1971)

    CAS  Google Scholar 

  20. Wilhelm, E., Battino, R.: Thermodynamic functions of the solubilities of gases in liquids at 25 °C. Chem. Rev. 73, 1–9 (1973)

    CAS  Google Scholar 

  21. Liebermann, E., Wilhelm, E.: On the thermodynamics of binary liquid mixtures of Scatchard–Hildebrand type at infinite dilution. Monatsh. Chem. 107, 367–369 (1976)

    CAS  Google Scholar 

  22. Wilhelm, E., Battino, R., Wilcock, R.J.: Low-pressure solubility of gases in liquid water. Chem. Rev. 77, 219–262 (1977)

    CAS  Google Scholar 

  23. Rettich, T.R., Handa, Y.P., Battino, R., Wilhelm, E.: Solubility of gases in liquids. 13. High-precision determination of Henry’s constants for methane and ethane in liquid water at 275 to 328 K. J. Phys. Chem. 85, 3230–3237 (1981)

    CAS  Google Scholar 

  24. Rettich, T.R., Battino, R., Wilhelm, E.: Solubility of gases in liquids. 16. Henry’s law coefficients for nitrogen in liquid water at 5 to 50 °C. J. Solution Chem. 13, 335–348 (1984)

    CAS  Google Scholar 

  25. Wilhelm, E.: The solubility of gases in liquids: a critical review. Pure Appl. Chem. 57, 303–322 (1985)

    CAS  Google Scholar 

  26. Wilhelm, E.: Precision methods for the determination of the solubility of gases in liquids. Crit. Rev. Anal. Chem. 16, 129–175 (1985)

    CAS  Google Scholar 

  27. Wilhelm, E.: Determination of caloric quantities of dilute liquid solutions. Thermochim. Acta 119, 17–33 (1987)

    CAS  Google Scholar 

  28. Wilhelm, E.: Caloric properties of dilute nonelectrolyte solutions: a success story. Thermochim. Acta 300, 159–168 (1997)

    CAS  Google Scholar 

  29. Rettich, T.R., Battino, R., Wilhelm, E.: Solubility of gases in liquids. 22. High-precision determination of Henry’s law constants of oxygen in liquid water from T = 274 K to T = 328 K. J. Thermodyn. 32, 1145–1156 (2000)

    CAS  Google Scholar 

  30. Wilhelm, E.: Low-pressure solubility of gases in liquids. In: Weir, R.D., de Loos, T.W. (eds.) Experimental Thermodynamics: Measurement of the Thermodynamic Properties of Multiple Phases, vol. VII, pp. 137–176. Elsevier/IUPAC, Amsterdam (2005)

  31. Wilhelm, E.: Thermodynamics of nonelectrolyte solubility. In: Letcher, T.M. (ed.) Developments and Applications in Solubility, pp. 3–18. The Royal Society of Chemistry/IACT, Cambridge (2007)

    Google Scholar 

  32. Wilhelm, E., Battino, R.: Partial molar heat capacity changes of gases dissolved in liquids. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 457–471. The Royal Society of Chemistry/IACT & IUPAC, Cambridge (2010)

    Google Scholar 

  33. Wilhelm, E.: Aqueous solutions of nonelectrolytes: a molecular thermodynamics perspective. J. Therm. Anal. Calorim. 108, 547–558 (2012)

    CAS  Google Scholar 

  34. Wilhelm, E.: The art and science of solubility measurements: what do we learn? Netsu Sokutei 39, 61–86 (2012)

    CAS  Google Scholar 

  35. Wilhelm, E.: Thermodynamics of solutions, especially dilute solutions of nonelectrolytes. In: Teixeira-Dias, J.J.C. (ed.) Molecular Liquids: New Perspectives in Physics and Chemistry. NATO ASI Series C: Mathematical and Physical Sciences, vol. 379, pp. 175–206. Kluwer Academic, Dordrecht (1992)

    Google Scholar 

  36. Popper, K.R.: The Logic of Scientific Discovery. Routledge, London (2002)

    Google Scholar 

  37. Dyson, F.: How we know. The New York Review of Books 58 (4), March 10, 2011

  38. Mach, E.: Die ökonomische Natur der physikalischen Forschung. In: Populärwissenschaftliche Vorlesungen. Leipzig, Germany, 1896. Reprinted by VDM Verlag Dr. Müller, Saarbrücken, Germany (2006). English translation by McCormack, T.J.: Popular Scientific Lectures (1898). Kessinger, Whitefish (2007)

  39. Swinburne, R.: Simplicity as Evidence of Truth (The Aquinas Lecture, 1997). Marquette University Press, Milwaukee (1997)

    Google Scholar 

  40. Katz, J.J.: Realistic Rationalism. MIT Press, Cambridge (1998)

    Google Scholar 

  41. Sober, E.: What is the problem of simplicity? In: Kreuzenkamp, H., McAleer, M., Zellner, A. (eds.) Simplicity, Inference, and Econometric Modelling, pp. 13–32. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  42. Prausnitz, J.M.: Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  43. Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  44. Dymond, J.H., Marsh, K.N., Wilhoit, R.C.: Virial Coefficients of Pure Gases and Mixtures. In: Frenkel, M., Marsh, K.N. (eds.) Landolt-Börnstein, Group IV: Physical Chemistry, Vol. 21A: Virial Coefficients of Pure Gases. Springer–Verlag, Heidelberg, Germany (2002); Vol. 21B: Virial Coefficients of Mixtures. Springer–Verlag, Heidelberg, Germany (2003)

  45. Frenkel, M., Marsh, K.N., Kabo, K.J., Wilhoit, A.C., Roganov, G.N.: Thermodynamics of organic compounds in the gas state, vols. I and II. Thermodynamics Research Center, The Texas A&M System, College Station (1994)

  46. Majer, V., Svoboda, V.: Enthalpies of Vaporization of Organic Compounds. A Critical Review and Data Compilation. Blackwell Scientific/IUPAC, Oxford (1985)

    Google Scholar 

  47. Haar, L., Gallagher, J.S., Kell, G.S.: NBS/NRC Steam Tables (NSRDS). Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units. Hemisphere, New York (1984)

  48. Hill, P.G., MacMillan, R.D.C.: Virial equation for light and heavy water. Ind. Eng. Chem. Res. 27, 874–882 (1988)

    CAS  Google Scholar 

  49. Wagner, W., Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)

    CAS  Google Scholar 

  50. Zábranský, M., Růžička Jr., V., Majer, V., Domalski, E.S.: Heat Capacity of Liquids, Volumes I and II: Critical Review and Recommended Values. J. Phys. Chem. Ref. Data, Monograph No. 6, American Chemical Society and American Institute of Physics (1996)

  51. Zábranský, M., Růžička Jr, V., Domalski, E.S.: Heat capacity of liquids: critical review and recommended values. Supplement I. J. Phys. Chem. Ref. Data 30, 1199–1689 (2001)

    Google Scholar 

  52. Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, Parts I and II. J. Phys. Chem. Ref. Data, Monograph No. 9, 4th edn., American Chemical Society and American Institute of Physics (1998)

  53. International DATA Series, SELECTED DATA ON MIXTURES, Series A, published by the Thermodynamics Research Center, Texas A&M University, College Station, TX (1973 through 1994)

  54. Solubility Data Series (IUPAC): Vol. 1. Pergamon Press, Oxford, UK, (1979) and subsequent volumes later; Solubility Data Series (IUPAC-NIST): Vol. 66: J. Phys. Chem. Ref. Data 27, 1289–1470 (1998), and subsequent later volumes

  55. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2001)

  56. Kazakov, A., Muzny, C.D., Chirico, R.D., Diky, V.V., Frenkel, M.: Web thermo tables—an on-line version of the TRC thermodynamic tables. J. Res. Natl. Inst. Stand. Technol. 113, 209–220 (2008)

    CAS  Google Scholar 

  57. NIST SDR 4. NIST Thermophysical Properties of Hydrocarbon Mixtures Database: Version 3.2. NIST, Boulder, Colorado, USA: http://www.nist.gov/srd/nist4.cfm. Accessed 19 Jun 2012

  58. NIST SDR 10. NIST/ASME Steam Properties Database: Version 2.22. NIST, Boulder, Colorado, USA: http://www.nist.gov/srd/nist10.cfm. Accessed 28 Feb 2012

  59. NIST SDR 23: NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 9.0. NIST, Boulder, Colorado, USA: http://www.nist.gov/srd/nist23.cfm. Accessed 22 Feb 2013

  60. NIST SDR 103b: NIST ThermoData Engine Version 7.0 – Pure Compounds, Binary Mixtures, Ternary Mixtures, and Chemical Reactions. NIST, Boulder, Colorado, USA: http://www.nist.gov/srd/nist103b.cfm Accessed 14 Feb 2013

  61. NIST SDR 203. NIST Web Thermo Tables (WTT) – Professional Edition. NIST, Boulder, Colorado, USA: http://www.nist.gov/srd/nistwebsub3.cfm. Accessed 11 Jan 2013

  62. Dortmund Data Bank Software and Separation Technology: http://www.ddbst.de

  63. McCullough, J.P., Scott, D.W. (eds.): Experimental Thermodynamics: Calorimetry of Non-reacting Systems, Vol. I. Butterworths/IUPAC, London (1968)

  64. Hemminger, W., Höhne, G.: Calorimetry. Fundamentals and Practice. Verlag Chemie, Weinheim (1984)

    Google Scholar 

  65. Trusler, J.P.M.: Physical Acoustics and Metrology of Fluids. Hilger, Bristol (1991)

    Google Scholar 

  66. Marsh, K.N., O’Hare, P.A.G. (eds.): Experimental Thermodynamics, vol. IV: Solution Calorimetry. Blackwell Scientific/IUPAC, Oxford (1994)

    Google Scholar 

  67. Höhne, G., Hemminger, W., Flammersheim, H.-J.: Differential Scanning Calorimetry, an Introduction for Practitioners. Springer, Berlin (1996)

    Google Scholar 

  68. Goodwin, A.R.H., Marsh, K.N., Wakeham, W.A. (eds.): Experimental Thermodynamics: Measurement of the Thermodynamic Properties of Single Phases, vol. VI. Elsevier/IUPAC, Amsterdam (2003)

  69. Weir, R.D., de Loos, ThW (eds.): Experimental Thermodynamics, vol. VII: Measurement of the Thermodynamic Properties of Multiple Phases. Elsevier/IUPAC, Amsterdam (2005)

    Google Scholar 

  70. Letcher, T.M. (ed.): Development and Application in Solubility. The Royal Society of Chemistry/IACT, Cambridge (2007)

    Google Scholar 

  71. Wilhelm, E., Letcher, T.M. (eds.): Heat Capacities: Liquids. Solutions and Vapours. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)

    Google Scholar 

  72. Hildebrand, J.H., Prausnitz, J.M., Scott, R.L.: Regular and Related Solutions. Van Nostrand Reinhold, New York (1970)

    Google Scholar 

  73. Kohler, F.: The Liquid State. Verlag Chemie, Weinheim (1972)

    Google Scholar 

  74. Ben-Naim, A.: Water and Aqueous Solutions. Introduction to a Molecular Theory. Plenum Press, New York (1974)

    Google Scholar 

  75. Marcus, Y.: Introduction to Liquid State Chemistry. Wiley, London (1977)

    Google Scholar 

  76. Rowlinson, J.S., Swinton, F.L.: Liquids and Liquid Mixtures, 3rd edn. Butterworth Scientific, London (1982)

    Google Scholar 

  77. Kreglewski, A.: Equilibrium Properties of Fluids and Fluid Mixtures. Texas A&M University Press, College Station (1984)

    Google Scholar 

  78. Gray, C.G., Gubbins, K.E.: Theory of Molecular Fluids. Vol. 1: Fundamentals. Clarendon Press, Oxford (1984)

    Google Scholar 

  79. Lee, L.L.: Molecular Thermodynamics of Nonideal Fluids. Butterworths, Boston (1988)

    Google Scholar 

  80. Sengers, J.V., Kayser, R.F., Peters, C.J., White, H.J.: Equations of State for Fluids and Fluid Mixtures. Experimental Thermodynamics, vol. V. Elsevier Science/IUPAC, Amsterdam (2000)

    Google Scholar 

  81. Barrat, J.-L., Hansen, J.-P.: Basic Concepts for Simple and Complex Liquids. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  82. Hansen, J.-P., McDonald, I.R.: Theory of Simple Liquids, 3rd edn. Academic Press/Elsevier, London (2006)

    Google Scholar 

  83. Ben-Naim, A.: Molecular Theory of Solutions. Oxford University Press, Oxford (2006)

    Google Scholar 

  84. Lucas, K.: Molecular Models for Fluids. Cambridge University Press, New York (2007)

    Google Scholar 

  85. Wu, J.Z.: Density functional theory for liquid structure and thermodynamics. In: Lu, X., Hu, Y. (eds.) Molecular Thermodynamics of Complex Systems. Structure and Bonding, vol. 131, pp. 1–73. Springer, Berlin (2009)

  86. Goodwin, A.R.H., Sengers, J.V., Peters, C.J. (eds.): Applied Thermodynamics of Fluids. The Royal Society of Chemistry/IUPAC & IACT, Cambridge (2010)

    Google Scholar 

  87. Gray, C.G., Gubbins, K.E., Joslin, C.G.: Theory of Molecular Fluids. Vol. 2: Applications. Oxford University Press, Oxford (2011)

    Google Scholar 

  88. Deiters, U.K., Kraska, T.: High-Pressure Fluid Phase Equilibria: Phenomenology and Computation. Elsevier, Oxford (2012)

    Google Scholar 

  89. Marcus, Y.: Ion Solvation. Wiley, Chichester (1985)

    Google Scholar 

  90. Barthel, J.M.G., Krienke, H., Kunz, W.: Physical Chemistry of Electrolyte Solutions: Modern Aspects. Steinkopff, Darmstadt, Germany, and Springer, New York (1998)

    Google Scholar 

  91. Lee, L.L.: Molecular Thermodynamics of Electrolyte Solutions. World Scientific, Singapore (2008)

    Google Scholar 

  92. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, New York (1989)

    Google Scholar 

  93. Haile, J.M.: Molecular Dynamics Simulation: Elementary Methods. Wiley, New York (1997)

    Google Scholar 

  94. Heyes, D.M.: The Liquid State: Applications of Molecular Simulations. Wiley, Chichester (1998)

    Google Scholar 

  95. Sadus, R.J.: Molecular Simulations of Fluids: Theory, Algorithms and Object-Orientation. Elsevier Science, New York (1999)

    Google Scholar 

  96. Leach, A.: Molecular Modelling: Principles and Applications, 2nd edn. Pearson Education, Essex (2001)

    Google Scholar 

  97. Vesely, F.J.: Computational Physics—An Introduction, 2nd edn. Kluwer Academic/Plenum, New York (2001)

    Google Scholar 

  98. Frenkel, D., Smit, B.: Understanding Molecular Simulation, 2nd edn. Academic Press, London (2002)

    Google Scholar 

  99. Cramer, C.J.: Essentials of Computational Chemistry: Theories and Models, 2nd edn. Wiley, Chichester (2004)

    Google Scholar 

  100. Rapaport, D.C.: The Art of Molecular Dynamics Simulation, 2nd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  101. Kaplan, I.G.: Intermolecular Interactions: Physical Picture. Computational Methods and Model Potentials. Wiley, Chichester (2006)

    Google Scholar 

  102. Tuckerman, M.E.: Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press, New York (2010)

    Google Scholar 

  103. Wilhelm, E.: Heat capacities, isothermal compressibilities and related quantities of fluids. In: Tachoire, H. (ed.) Journées d’Étude sur les Capacités Calorifiques des Systems Condensés, pp. 138–163. Société Française de Chimie, Association Française de Calorimétrie et d’Analyse Thermique, Groupement pour l’Avancement des Méthodes Spectroscopiques et Physicochimiques d’Analyse, et Comité des Tables Thermodynamiques de l’IUPAC, Marseille (1987)

  104. Wilhelm, E.: Heat capacities: introduction, concepts and selected applications. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 1–27. The Royal Society of Chemistry/IACT & IUPAC, Cambridge (2010)

    Google Scholar 

  105. Hoge, H.J.: Heat capacity of a two-phase system, with applications to vapor corrections in calorimetry. J. Res. Natl. Bur. Stand. 36, 111–118 (1946)

    CAS  Google Scholar 

  106. Wieser, M.E., Coplen, T.B.: Atomic weights of the elements 2009 (IUPAC Technical Report). Pure Appl. Chem. 83, 359–396 (2011)

    CAS  Google Scholar 

  107. Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical constants: 2012. Rev. Mod. Phys. 84, 1527–1605 (2012)

    CAS  Google Scholar 

  108. Herzfeld, K.F., Litovitz, T.A.: Absorption and Dispersion of Ultrasonic Waves. Academic Press, New York (1959)

    Google Scholar 

  109. Bhatia, A.B.: Ultrasonic Absorption. Oxford University Press, London (1967)

    Google Scholar 

  110. Blandamer, M.J.: Introduction to Chemical Ultrasonics. Academic Press, London (1973)

    Google Scholar 

  111. Kaatze, U., Hushcha, T.O., Eggers, F.: Ultrasonic broadband spectrometry of liquids: a research tool in pure and applied chemistry and chemical physics. J. Solution Chem. 29, 299–368 (2000)

    CAS  Google Scholar 

  112. Kaatze, U., Eggers, F., Lautscham, K.: Ultrasonic velocity measurements in liquids with high resolution-techniques, selected applications and perspectives. Meas. Sci. Technol. 19, 06200-1–06200-21 (2008)

    Google Scholar 

  113. Philip, N.M.: Adiabatic and isothermal compressibilities of liquids. Proc. Indian Acad. Sci. A 9, 109–129 (1939)

    Google Scholar 

  114. Staveley, L.A.K., Hart, K.R., Tupman, W.I.: The heat capacities and other thermodynamic properties of some binary liquid mixtures. Disc. Faraday Soc. 15, 130–150 (1953)

    Google Scholar 

  115. Staveley, L.A.K., Tupman, W.I., Hart, K.R.: Some thermodynamic properties of the systems benzene + ethylene dichloride, benzene + carbon tetrachloride, and acetone + carbon disulphide. Trans. Faraday Soc. 51, 323–343 (1955)

    CAS  Google Scholar 

  116. Harrison, D., Moelwyn-Hughes, E.A.: The heat capacities of certain liquids. Proc. R. Soc. Lond. A 239, 230–246 (1957)

    CAS  Google Scholar 

  117. Nývlt, J., Erdös, E.: PVT relations in solutions of liquid non-electrolytes. I. Compressibility. Coll. Czech. Chem. Commun. 26, 485–499 (1961)

    Google Scholar 

  118. Magee, J.W.: Molar heat capacity (C V ) for saturated and compressed liquid and vapor nitrogen from 65 to 300 K at pressures to 35 MPa. J. Res. Natl. Inst. Stand. Technol. 96, 725–740 (1991)

    CAS  Google Scholar 

  119. Kuroki, T., Kagawa, N., Endo, H., Tsuruno, S., Magee, J.W.: Specific heat capacity at constant volume for water, methanol, and their mixtures at temperatures from 300 K to 4400 K and pressures to 20 MPa. J. Chem. Eng. Data 46, 1101–1106 (2001)

    CAS  Google Scholar 

  120. Kitajima, H., Kagawa, N., Endo, H., Tsuruno, S., Magee, J.W.: Isochoric heat capacities of alkanols and their aqueous mixtures. J. Chem. Eng. Data 48, 1583–1586 (2003)

    CAS  Google Scholar 

  121. Aliev, M.M., Magee, J.W., Abdulagatov, I.M.: Volumetric (PVT) and calorimetric (C V VT) measurements for pure methanol in the liquid phase. Int. J. Thermophys. 24, 1527–1549 (2003)

    CAS  Google Scholar 

  122. Aliev, M.M., Magee, J.W., Abdulagatov, I.M.: PVTx and isochoric heat capacity measurements for aqueous methanol solutions. Int. J. Thermophys. 24, 1551–1579 (2003)

    CAS  Google Scholar 

  123. Perkins, A.R., Magee, J.W.: Molar heat capacity at constant volume for isobutane at temperatures from (114 to 345) K and at pressures to 35 MPa. J. Chem. Eng. Data 54, 2646–2655 (2009)

    CAS  Google Scholar 

  124. Asenbaum, A., Wilhelm, E.: Thermodynamics and vibrational dynamics of tetrachloromethane, benzene and cyclohexane. Adv. Mol. Relax. Interact. Process. 22, 187–198 (1982)

    CAS  Google Scholar 

  125. Asenbaum, A., Soufi-Siavoch, P., Wilhelm, E.: Brillouinstreung an flüssigem Toluol. Acoustica 67, 284–291 (1989)

    CAS  Google Scholar 

  126. Davies, L.A., Gordon, R.B.: Compression of mercury at high pressure. J. Chem. Phys. 46, 2650–2660 (1967)

    Google Scholar 

  127. Vedam, R., Holton, G.: Specific volumes of water at high pressures, obtained from ultrasonic-propagation measurements. J. Acoust. Soc. Am. 43, 108–116 (1968)

    CAS  Google Scholar 

  128. Fine, R.A., Millero, F.J.: Compressibility of water as a function of temperature and pressure. J. Chem. Phys. 59, 5529–5536 (1973)

    CAS  Google Scholar 

  129. Kell, G.S., Whalley, E.: Reanalysis of the density of liquid water in the range 0–150 °C and 0–1 kbar. J. Chem. Phys. 62, 3496–3503 (1975)

    CAS  Google Scholar 

  130. Muringer, M.J.P., Trappeniers, N.J., Biswas, S.N.: The effect of pressure on the sound velocity and density of toluene and n-heptane up to 2600 bar. Phys. Chem. Liq. 14, 273–296 (1985)

    CAS  Google Scholar 

  131. Takagi, T., Wilhelm, E.: Speed-of-sound measurements and heat capacities of liquid systems at high pressure. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 218–237. The Royal Society of Chemistry/IACT & IUPAC, Cambridge (2010)

    Google Scholar 

  132. Sun, T.F., ten Seldam, C.A., Kortbeek, B.J., Trappeniers, N.J., Biswas, S.N.: Acoustic and thermodynamic properties of ethanol from 273.15 to 333.15 K and up to 280 MPa. Phys. Chem. Liq. 18, 107–116 (1988)

    CAS  Google Scholar 

  133. Sun, T.F., Bominaar, S.A.R.C., ten Seldam, C.A., Biswas, S.N.: Evaluation of the thermophysical properties of toluene and n-heptane from 180 to 320 K and up to 260 MPa from speed-of-sound data. Ber. Bunsenges. Physik. Chem. 95, 696–704 (1991)

    CAS  Google Scholar 

  134. Daridon, J.L., Lagourette, B., Grolier, J.-P.E.: Experimental measurements of the speed of sound in n-hexane from 293 to 373 K and up to 150 MPa. Int. J. Thermophys. 19, 145–160 (1998)

    CAS  Google Scholar 

  135. Dutour, S., Daridon, J.L., Lagourette, B.: Speed of sound, density, and compressibilities of liquid eicosane and docosane at various temperatures and pressures. High Temp. High Press 33, 371–378 (2001)

    CAS  Google Scholar 

  136. Gomes de Azevedo, R., Esperança, J.M.S.S., Najdanovic-Visak, V., Visak, Z.P., Guedes, H.J.R., Nunes da Ponte, M., Rebelo, L.P.N.: Thermophysical and thermodynamic properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate over an extended pressure range. J. Chem. Eng. Data 50, 997–1008 (2005)

    Google Scholar 

  137. Zorębski, E., Dzida, M.: Study of the acoustic and thermodynamic properties of 1,2- and 1,3-butanediol by means of high-pressure speed of sound measurements at temperatures from (293 to 318) K and pressures up to 101 MPa. J. Chem. Eng. Data 52, 1010–1017 (2007)

    Google Scholar 

  138. Chorążewski, M., Skrzypek, M.: Thermodynamic and acoustic properties of 1,3-dibromopropane and 1,5-dibromopentane within the temperature range from 293 K to 313 K at pressures up to 100 MPa. Int. J. Thermophys. 31, 26–41 (2010)

    Google Scholar 

  139. Lin, C.-W., Trusler, J.P.M.: The speed of sound and derived thermodynamic properties of pure water at temperatures between (253 and 473) K and at pressures up to 400 MPa. J. Chem. Phys. 136, 094511-1–094511-11 (2012)

    Google Scholar 

  140. Baltasar, E.H., Taravillo, M., Baonza, V.G., Sanz, P.D., Guignon, B.: Speed of sound in liquid water from (253.15 to 348.15) K and pressures from (0.1 to 700) MPa. J. Chem. Eng. Data 56, 4800–4807 (2011)

    Google Scholar 

  141. Hildebrand, J.H., Scott, R.L.: The Solubility of Nonelectrolytes, 3rd edn. Reinhold, New York (1950)

    Google Scholar 

  142. Barton, A.F.M.: Internal pressure: a fundamental liquid property. J. Chem. Educ. 48, 156–162 (1971)

    CAS  Google Scholar 

  143. Dack, M.R.J.: The importance of solvent internal pressure and cohesion to solution phenomena. Chem. Soc. Rev. 4, 211–229 (1975)

    CAS  Google Scholar 

  144. Marcus, Y.: Internal pressure of liquids and solutions. Chem. Rev. 113, 6536–6551 (2013). doi:10.1021/cr3004423

    CAS  Google Scholar 

  145. Goharshadi, E.K., Morsali, A., Mansoori, G.A.: A molecular dynamics study on the role of attractive and repulsive forces in internal energy, internal pressure and structure of dense fluids. Chem. Phys. 331, 332–338 (2007)

    CAS  Google Scholar 

  146. Mohazzabi, P., Mansoori, G.A.: Volumetric dependence of interatomic distance in dense nanosystems: a theoretical and molecular dynamics study. J. Comput. Theor. Nanosci. 5, 1–8 (2008)

    Google Scholar 

  147. Mie, G.: Zur kinetischen gastheorie der einatomigen körper. Ann. Phys. 11, 657–697 (1903)

    Google Scholar 

  148. Hergert, W., Wried, T. (eds.): The Mie Theory. Basics and Applications. Springer Series in Optical Sciences, vol. 169. Springer, Berlin (2012)

    Google Scholar 

  149. Jones, J.E.: On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. Proc. R. Soc. Lond. A 106, 441–462 (1924)

    CAS  Google Scholar 

  150. Jones, J.E.: On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. A 106, 463–477 (1924)

    CAS  Google Scholar 

  151. Jones, J.E.: On the determination of molecular fields. III. From crystal measurements and kinetic theory data. Proc. R. Soc. Lond. A 106, 709–718 (1924)

    CAS  Google Scholar 

  152. Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. 43, 46–482 (1931)

    Google Scholar 

  153. Westwater, W., Frantz, H.W., Hildebrand, J.H.: The internal pressure of pure and mixed liquids. Phys. Rev. Ser. II 31, 135–144 (1928)

    CAS  Google Scholar 

  154. Hildebrand, J.H.: The compressibilities and thermal pressure coefficients of certain liquids. Phys. Rev. Ser. II 34, 649–651 (1929)

    CAS  Google Scholar 

  155. Bianchi, U., Agabio, G., Turturro, A.: Internal pressure of simple liquids. J. Phys. Chem. 69, 4392–4395 (1965)

    CAS  Google Scholar 

  156. Orwoll, R.A., Flory, P.J.: Equation-of-state parameters for normal alkanes. Correlation with chain length. J. Am. Chem. Soc. 89, 6814–6822 (1967)

    CAS  Google Scholar 

  157. Bagley, E.B., Nelson, T.P., Barlow, J.W., Chen, S.-A.: Internal pressure measurements and liquid-state energies. Ind. Eng. Chem. Fundam. 9, 93–97 (1970)

    CAS  Google Scholar 

  158. Bagley, E.B., Nelson, T.P., Chen, S.-A., Barlow, J.W.: Internal pressure measurements and evaluation of external molecular vibrational modes in the liquid state. Ind. Eng. Chem. Fundam. 10, 27–32 (1971)

    CAS  Google Scholar 

  159. Few, G.A., Rigby, M.: Thermal pressure coefficient and internal pressure of 2,2-dimethylpropane. J. Phys. Chem. 79, 1543–1546 (1975)

    CAS  Google Scholar 

  160. Renuncio, J.A.R., Breedveld, G.J.F., Prausnitz, J.M.: Internal pressures and solubility parameters for carbon disulfide, benzene, and cyclohexane. J. Phys. Chem. 81, 324–327 (1977)

    CAS  Google Scholar 

  161. McLure, I.A., Arriaga-Colina, J.L.: Thermal pressure coefficients of ethanenitrile, propanenitrile, and butanenitrile in the region 295–395 K. Int. J. Thermophys. 5, 291–300 (1984)

    CAS  Google Scholar 

  162. Compostizo, A., Crespo Colin, A., Vigil, M.R., Rubio, R.G., Diaz Peña, M.: Influence of pressure on the thermodynamic properties of simple molecular fluids: CCl4 + CS2 system. J. Phys. Chem. 92, 3998–4006 (1988)

    CAS  Google Scholar 

  163. Polikhronidi, N.G., Batyrova, R.G., Abdulagatov, I.M., Stepanov, G.V., Wu, J.T.: PvT and thermal–pressure coefficient measurements of diethyl ether (DEE) in the critical and supercritical regions. J. Chem. Thermodyn. 53, 67–81 (2012)

    CAS  Google Scholar 

  164. Scatchard, G.: Equilibria in non-electrolyte solutions in relation to the vapor pressures and densities of the components. Chem. Rev. 8, 321–333 (1931)

    CAS  Google Scholar 

  165. Hansen, C.M.: The universality of the solubility parameter. Ind. Eng. Chem. Prod. Res. Dev. 8, 2–11 (1969)

    CAS  Google Scholar 

  166. Barton, A.F.M.: Solubility parameters. Chem. Rev. 75, 731–753 (1975)

    CAS  Google Scholar 

  167. Barton, A.F.M.: Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd edn. CRC, Boca Raton (1991)

    Google Scholar 

  168. Hansen, C.M.: Hansen Solubility Parameters: A User’s Handbook, 2nd edn. CRC, Boca Raton (2007)

    Google Scholar 

  169. Panayiotou, C.: Solubility parameter revisited: an equation-of-state approach for its estimation. Fluid Phase Equilib. 131, 21–35 (1997)

    CAS  Google Scholar 

  170. Stefanis, E., Tsivintzelis, I., Panayiotou, C.: The partial solubility parameters: an equation-of-state approach. Fluid Phase Equilib. 240, 144–154 (2006)

    CAS  Google Scholar 

  171. Gharagheizi, F., Eslamimanesh, A., Mohammadi, A.H., Richon, D.: Group contribution-based method for determination of solubility parameter of nonelectrolyte organic compounds. Ind. Eng. Chem. Res. 50, 10344–10349 (2011)

    CAS  Google Scholar 

  172. Gharagheizi, F., Eslamimanesh, A., Farjood, F., Mohammadi, A.H., Richon, D.: Solubility parameters of nonelectrolyte organic compounds: determination using quantitative structure–property relationship strategy. Ind. Eng. Chem. Res. 50, 11382–11395 (2011)

    CAS  Google Scholar 

  173. Gharagheizi, F., Eslamimanesh, A., Sattari, M., Mohammadi, A.H., Richon, D.: Corresponding states method for evaluation of the solubility parameters of chemical compounds. Ind. Eng. Chem. Res. 51, 3826–3831 (2012)

    CAS  Google Scholar 

  174. Wilhelm, E.: Pressure dependence of the isothermal compressibility and a modified form of the Tait equation. J. Chem. Phys. 63, 3379–3381 (1975)

    CAS  Google Scholar 

  175. Wilhelm, E.: Isothermal compressibility of liquids and a modified version of the Tait equation: a van der Waals approach. In: Proceedings of the 14th International Conference on Chemical Thermodynamics, vol. II, pp. 87–94, Montpellier, 26–30 August (1975)

  176. Verdier, S., Andersen, S.I.: Internal pressure and solubility parameter as a function of pressure. Fluid Phase Equilib. 231, 125–137 (2005)

    CAS  Google Scholar 

  177. Rai, N., Siepmann, J.I., Schultz, N.E., Ross, R.B.: Pressure dependence of the Hildebrand solubility parameter and the internal pressure: Monte Carlo simulations for external pressures up to 300 MPa. J. Phys. Chem. C 111, 15634–15641 (2007)

    CAS  Google Scholar 

  178. van Laar, J.J.: Über dampfspannungen von binären gemischen. Z. Physik. Chem. 72, 723–751 (1910)

    Google Scholar 

  179. van Laar, J.J.: Zur theorie der dampfspannungen von binären gemischen. Erwiderung an Herrn F. Dolezalek. Z. Physik. Chem. 83, 599–608 (1913)

    Google Scholar 

  180. van Laar, J.J., Lorenz, R.: Berechnung von mischungswärmen kondensierter systeme. Z. Anorg. Allg. Chem. 146, 42–44 (1925)

    Google Scholar 

  181. Bridgman, P.W.: Thermodynamic properties of liquid water to 80° and 12000 kg. Proc. Am. Acad. Arts Sci. 48, 307–362 (1912)

    Google Scholar 

  182. Bridgman, P.W.: Thermodynamic properties of twelve liquids between 20° and 80° and up to 12000 kg per cm2. Proc. Am. Acad. Arts Sci. 49, 1–114 (1913)

    Google Scholar 

  183. Gibson, R.E., Kincaid, J.F.: The influence of temperature and pressure on the volume and refractive index of benzene. J. Am. Chem. Soc. 60, 511–518 (1938)

    CAS  Google Scholar 

  184. Gibson, R.E., Loeffler, O.H.: Pressure–volume–temperature relations in solutions. I. Observations on the behavior of solutions of benzene and some of its derivatives. J. Phys. Chem. 43, 207–217 (1939)

    CAS  Google Scholar 

  185. Gibson, R.E., Loeffler, O.H.: Pressure–volume–temperature relations in solutions. II. The energy–volume coefficients of aniline, nitrobenzene, bromobenzene and chlorobenzene. J. Am. Chem. Soc. 61, 2515–2522 (1939)

    CAS  Google Scholar 

  186. Gibson, R.E., Loeffler, O.H.: Pressure–volume–temperature relations in solutions. III. Some thermodynamic properties of mixtures of aniline and nitrobenzene. J. Am. Chem. Soc. 61, 2877–2884 (1939)

    CAS  Google Scholar 

  187. Gibson, R.E., Loeffler, O.H.: Pressure–volume–temperature relations in solutions. V. The energy–volume coefficients of carbon tetrachloride, water and ethylene glycol. J. Am. Chem. Soc. 63, 898–906 (1939)

    Google Scholar 

  188. Hayward, A.T.J.: Compressibility equations for liquids: a comparative study. Br. J. Appl. Phys. 18, 977–995 (1967)

    Google Scholar 

  189. Dymond, J.H., Malhotra, R.: The Tait equation: 100 years on. Int. J. Thermophys. 9, 941–951 (1988)

    Google Scholar 

  190. Kratky, O., Leopold, H., Stabinger, H.: Dichtemessungen an Flüssigkeiten und Gasen auf 10−6 g/cm3 bei 0.6 cm3 Präparatvolumen. Z. Angew. Phys. 27, 273–277 (1969)

    CAS  Google Scholar 

  191. Picker, P., Tremblay, E., Jolicoeur, C.: A high-precision digital readout flow densimeter for liquids. J. Solution Chem. 3, 377–384 (1974)

    CAS  Google Scholar 

  192. Albert, H.J., Wood, R.H.: High-precidion flow densimeter for fluids at temperatures to 700 K and pressures to 40 MPa. Rev. Sci. Instrum. 55, 589–593 (1984)

    CAS  Google Scholar 

  193. Simonson, J.M., Oakes, C.S., Bodnar, R.J.: Densities of NaCl(aq) to the temperature 523 K at pressures to 40 MPa measured with a new vibrating-tube densitometer. J. Chem. Thermodyn. 26, 345–360 (1994)

    CAS  Google Scholar 

  194. Galicia-Luna, L.A., Richon, D., Renon, H.: New loading technique for a vibrating tube densimeter and measurements of liquid densities up to 39.5 MPa for binary and ternary mixtures of the carbon dioxide–methanol–propane system. J. Chem. Eng. Data 39, 424–431 (1994)

    CAS  Google Scholar 

  195. Blencoe, J.G., Drummond, S.E., Seitz, J.C., Nesbitt, B.E.: A vibrating-tube densimeter for fluids at high pressures and temperatures. Int. J. Thermophys. 17, 179–190 (1996)

    CAS  Google Scholar 

  196. Ihmels, E.C., Gmehling, J.: Densities of toluene, carbon dioxide, carbonyl sulfide, and hydrogen sulfide over a wide temperature and pressure range in the sub- and supercritical state. Ind. Eng. Chem. Res. 40, 4470–4477 (2001)

    CAS  Google Scholar 

  197. Hnedkovský, L., Cibulka, I.: An automated vibrating-tube densimeter for measurements of small density differences in dilute aqueous solutions. Int. J. Thermophys. 25, 1135–1142 (2004)

    Google Scholar 

  198. Aida, T., Yamazaki, A., Akutsu, M., Ono, T., Kanno, A., Hoshina, T.A., Ota, M., Watanabe, M., Sato, Y., Smith, R.L., Inomata, H.: Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures. Rev. Sci. Instrum. 78, 11511-11–11511-13 (2007)

    Google Scholar 

  199. Safarov, J., Millero, F., Feistel, R., Heintz, A., Hassel, E.: Thermodynamic properties of standard seawater: extensions to high temperatures and pressures. Ocean Sci. 5, 235–246 (2009)

    CAS  Google Scholar 

  200. Randzio, S.L.: Calorimetric determination of pressure effects. In: Marsh, K.N., O’Hare, P.A.G. (eds.) Experimental Thermodynamics, Vol. IV: Solution Calorimetry, pp. 303–324. Blackwell Scientific/IUPAC, Oxford (1994)

    Google Scholar 

  201. Randzio, S.L., Grolier, J.-P.E., Quint, J.R., Eatough, D.J., Lewis, E.A., Hansen, L.D.: n-Hexane as a model for compressed simple liquids. Int. J. Thermophys. 15, 415–441 (1994)

    CAS  Google Scholar 

  202. Randzio, S.L., Grolier, J.-P.E., Quint, J.R.: Thermophysical properties of 1-hexanol over the temperature range from 303 K to 503 K and at pressures from the saturation line to 400 MPa. Fluid Phase Equilib. 110, 342–359 (1995)

    Google Scholar 

  203. Randzio, S.L.: Scanning transitiometry and its use to determine heat capacities of liquids at high pressures. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 153–184. The Royal Society of Chemistry/IACT & IUPAC, Cambridge (2010)

    Google Scholar 

  204. Navia, P., Troncoso, J., Romani, L.: New calibration methodology for calorimetric determination of isobaric thermal expansivity of liquids as a function of temperature and pressure. J. Chem. Thermodyn. 40, 1607–1611 (2008)

    CAS  Google Scholar 

  205. Navia, P., Troncoso, J., Romani, L.: Isobaric thermal expansivity behaviour against temperature and pressure of associating fluids. J. Chem. Thermodyn. 42, 23–27 (2010)

    CAS  Google Scholar 

  206. Navia, P., Troncoso, J., Romani, L.: Isobaric thermal expansivity of highly polar nitrogen compounds at temperatures from (278.15 to 348.15) K and at pressures from (5 to 55) MPa. J. Chem. Eng. Data 55, 1537–1541 (2010)

    CAS  Google Scholar 

  207. Navia, P., Troncoso, J., Romaní, L.: Isobaric thermal expansivity for nonpolar compounds. J. Chem. Eng. Data 55, 2173–2179 (2010)

    CAS  Google Scholar 

  208. Moelwyn-Hughes, E.A.: The determination of intermolecular energy constants from common physicochemical properties of liquids. J. Phys. Chem. 55, 1246–1254 (1951)

    CAS  Google Scholar 

  209. Schaafs, W., Hellwege, K.-H., Hellwege, A.M. (eds.): Molecular Acoustics. Landolt–Börnstein, Group II: Atomic and Molecular Physics, vol. 5. Springer, Berlin (1967)

  210. Bartholomé, E., Eucken, A.: The dependence on temperature of the specific heat (C v ) of monoatomic liquids. Trans. Faraday Soc. 33, 45–54 (1937)

    Google Scholar 

  211. Eucken, A.: Assoziation in Flüssigkeiten. Z. Elektrochem. 52, 255–269 (1948)

    CAS  Google Scholar 

  212. Bernal, J.D.: An attempt at a molecular theory of liquid structure. Trans. Faraday Soc. 33, 27–40 (1937)

    CAS  Google Scholar 

  213. Kincaid, J.F., Eyring, H.: Free volumes and free angle ratios of molecules in liquids. J. Chem. Phys. 6, 620–629 (1938)

    CAS  Google Scholar 

  214. Findenegg, G.H., Kohler, F.: Molar heat capacity at constant volume of binary mixtures of 1,2-dibromo- and 1,2-dichloroethane with benzene. Trans. Faraday Soc. 63, 870–878 (1967)

    CAS  Google Scholar 

  215. Kohler, F.: Pseudoternäre Mischungen. Monatsh. Chem. 100, 1151–1183 (1969)

    CAS  Google Scholar 

  216. Bondi, A.: Estimation of the heat capacity of liquids. Ind. Eng. Chem. Fundam. 5, 442–449 (1966)

    CAS  Google Scholar 

  217. Neckel, A., Volk, H.: Über die thermodynamischen Eigenschaften von Mischungen von Aromaten mit halogenierten Kohlenwasserstoffen. Z. Elektrochem. 62, 1104–1115 (1958)

    CAS  Google Scholar 

  218. Lielmesz, L., Bondi, A.: Notes on the contribution of hindered internal rotation and rotational isomerism to thermodynamic properties. Chem. Eng. Sci. 20, 706–709 (1965)

    Google Scholar 

  219. Wilhelm, E., Grolier, J.-P.E., Karbalai Ghassemi, M.H.: Molar heat capacity of binary liquid mixtures: 1,2-dichloroethane + cyclohexane and 1,2-dichloroethane + methylcyclohexane. Thermochim. Acta 28, 59–69 (1979)

    CAS  Google Scholar 

  220. Shimanouchi, T.: Tables of Molecular Vibrational Frequencies. Consolidated volume I. Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. (U.S.) 39 (1972)

  221. Shimanouchi, T.: Tables of molecular vibrational frequencies. Consolidated volume II. J. Phys. Chem. Ref. Data 6, 993–1102 (1977)

    CAS  Google Scholar 

  222. Shimanouchi, T., Matsuura, H., Ogawa, Y., Harada, I.: Tables of molecular vibrational frequencies. Part 10. J. Phys. Chem. Ref. Data 9, 1149–1254 (1980)

    CAS  Google Scholar 

  223. Schäfer, K., Lax, E. (eds.): Kalorische Zustandsgrößen. Landolt-Börnstein, 6. Auflage, II. Band, 4. Teil. Springer, Berlin (1961)

  224. Stewart, R.B., Jacobson, R.T.: Thermodynamic properties of argon from the triple point to 1200 K with pressures to 1000 MPa. J. Phys. Chem. Ref. Data 18, 639–798 (1989)

    CAS  Google Scholar 

  225. Sackmann, H.: Das Raumproblem bei Tetrahalogeniden der IV. Gruppe. Z. Phys. Chem. Leipzig 208, 235–248 (1958)

    CAS  Google Scholar 

  226. Pitzer, K.S., Gwinn, W.D.: Energy levels and thermodynamic functions for molecules with internal rotation. I. Rigid frame with attached tops. J. Chem. Phys. 10, 428–449 (1942)

    CAS  Google Scholar 

  227. O’Reilly, D.E., Schacher, G.E.: Rotational correlation times for quadrupolar relaxation in liquids. J. Chem. Phys. 39, 1768–1771 (1963)

    Google Scholar 

  228. Sharp, R.R.: Rotational diffusion and magnetic relaxation of 119Sn in liquid SnCl4 and SnI4. J. Chem. Phys. 57, 5321–5330 (1972)

    CAS  Google Scholar 

  229. Narten, A.H., Danford, M.H., Levy, H.A.: Structure and intermolecular potential of liquid carbon tetrachloride derived from X-ray diffraction data. J. Chem. Phys. 46, 4875–4880 (1967)

    CAS  Google Scholar 

  230. Egelstaff, P.A., Page, D.I., Powles, J.G.: Orientational correlations in molecular liquids by neutron scattering. Carbon tetrachloride and germanium chloride. Mol. Phys. 20, 881–894 (1971)

    CAS  Google Scholar 

  231. van Tricht, J.B.: On the application of the method of interval normalization to neutron diffraction data from molecular liquids. J. Chem. Phys. 66, 85–91 (1978)

    Google Scholar 

  232. Jöllenbeck, K.M., Weidner, J.U.: Röntgenstrukturuntersuchungen des flüssigen Silicium-, Germanium- und Zinntetrachlorids. Ein Beitrag zur Frage einer gemeinsamen Flüssigkeitsstruktur. II. Bestimmung der individuellen partiellen Paarkorrelationsfunktionen. Vorschlag eines einheitlichen Strukturmodells. Ber. Bunsenges. Phys. Chem. 91, 17–24 (1987)

    Google Scholar 

  233. Misawa, M.: Temperature dependence of structure of liquid carbon tetrachloride measured by pulsed neutron total scattering. J. Chem. Phys. 91, 5648–5654 (1989)

    CAS  Google Scholar 

  234. Akatsuka, H., Misawa, M., Fukunaga, T., Mizutani, U., Furusaka, M.: Structure of liquid carbon tetrachloride up to the subcritical point measured by wide Q-range neutron diffraction. J. Chem. Phys. 107, 3080–3084 (1997)

    CAS  Google Scholar 

  235. Pusztai, L., McGreevy, R.L.: The structure of liquid CCl4. Mol. Phys. 90, 533–539 (1997)

    CAS  Google Scholar 

  236. Rey, R., Pardo, L.C., Llanta, E., Ando, K., López, D.O., Tamarit, J.L., Barrio, M.: X-ray and molecular dynamics study of liquid structure in pure methylchloromethane compounds ((CH3)4−n CCl n ). J. Chem. Phys. 112, 7505–7517 (2001)

    Google Scholar 

  237. Jóvári, P., Mészáros, G., Pusztai, L., Sváb, E.: The structure of liquid tetrachlorides CCl4, SiCl4, GeCl4, TiCl4, VCl4, and SnCl4. J. Chem. Phys. 114, 8082–8090 (2001)

    Google Scholar 

  238. Pardo, L.C., Tamarit, J.L., Veglio, N., Bermejo, G.J., Cuello, G.J.: Comparison of short-range-order in liquid- and rotator-phase states of a simple molecular liquid: A reverse Monte Carlo and molecular dynamics analysis of neutron diffraction data. Phys. Rev. B 76, 134203-1–134203-6 (2007)

    Google Scholar 

  239. Pothoczki, S.Z., Temleitner, L., Jóvári, P., Kohara, S., Pusztai, L.: Nanometer range correlations between molecular orientations in liquids of molecules with perfect tetrahedral shape: CCl4, SiCl4, GeCl4, and SnCl4. J. Chem. Phys. 130, 0645031–0645037 (2009)

    Google Scholar 

  240. Pothoczki, S.Z., Ottochian, A., Rovira-Esteva, M., Pardo, L.C., Tamarit, J.L., Cuello, G.J.: Role of steric and electrostatic effects in the short-range order of quasitetrahedral molecular liquids. Phys. Rev. B 85, 0142021–0142029 (2012)

    Google Scholar 

  241. Steinhauser, O., Neumann, M.: Structure and dynamics of liquid carbon tetrachloride. A molecular dynamics study. Mol. Phys. 40, 115–128 (1980)

    CAS  Google Scholar 

  242. Steinhauser, O., Bertagnolli, H.: Pair correlation functions of liquid CCl4. A comparison between statistical mechanical theories and computer simulation. Z. Phys. Chem. Neue Folge 124, 33–43 (1981)

    CAS  Google Scholar 

  243. Soetens, J.-C., Jansen, G., Millot, C.: Molecular dynamics simulation of liquid CCl4, with a new polarizable potential model. Mol. Phys. 96, 1003–1012 (1999)

    CAS  Google Scholar 

  244. Rey, R.: Quantitative characterization of orientational order in liquid carbon tetrachloride. J. Chem. Phys. 126, 164506-1–164506-7 (2007)

    Google Scholar 

  245. Rey, R.: Thermodynamic state dependence of orientational order and rotational relaxation in carbon tetrachloride. J. Chem. Phys. 129, 224509-1–224509-9 (2008)

    Google Scholar 

  246. Rey, R.: Is there a common orientational order for the liquid phase of tetrahedral molecules? J. Chem. Phys. 131, 064502-1–064502-9 (2009)

    Google Scholar 

  247. Lowden, L.J., Chandler, D.: Theory of intermolecular pair correlations for molecular liquids. Applications to the liquids carbon tetrachloride, carbon disulfide, carbon diselenide, and benzene. J. Chem. Phys. 61, 5228–5241 (1974)

    CAS  Google Scholar 

  248. Montague, D.G., Chowdhury, M.R., Dore, J.C., Reed, J.: A RISM analysis of structural data for tetrahedral molecular systems. Mol. Phys. 50, 1–23 (1983)

    CAS  Google Scholar 

  249. van Tricht, J.B., Sjoerdsma, J.S.: Partial chlorine–chlorine intermolecular scattering functions for XCl4 liquids (X = C, Si, Ge, V, Ti, Sn) from neutron diffraction and the RISM. Mol. Phys. 59, 507–514 (1986)

    Google Scholar 

  250. McGreevy, R.L.: Reverse Monte Carlo modeling. J. Phys. Condens. Matter 13, R877–R913 (2001)

    CAS  Google Scholar 

  251. Fredenslund, A., Jones, R.L., Prausnitz, J.M.: Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21, 1086–1099 (1975)

    CAS  Google Scholar 

  252. Kehiaian, H.V.: Thermodynamik flüssiger Mischungen von Kohlenwasserstoffen mit verwandten Substanzen. Ber. Bunsenges. Physik. Chem. 81, 908–921 (1977)

    CAS  Google Scholar 

  253. Kehiaian, H.V., Grolier, J.-P.E., Benson, G.C.: Thermodynamics of organic mixtures. A generalized quasichemical theory in terms of group surface interactions. J. Chim. Phys. 75, 1031–1048 (1978)

    CAS  Google Scholar 

  254. Kehiaian, H.V.: Thermodynamics of binary liquid organic mixtures. Pure Appl. Chem. 57, 15–30 (1985)

    CAS  Google Scholar 

  255. Weidlich, U., Gmehling, J.: A modified UNIFAC model. 1. Prediction of VLE, h E, and γ . Ind. Eng. Chem. Res. 26, 1372–1381 (1987)

    CAS  Google Scholar 

  256. Lohmann, J., Joh, R., Gmehling, J.: From UNIFAC to modified UNIFAC (Dortmund). Ind. Eng. Chem. Res. 40, 957–964 (2001)

    CAS  Google Scholar 

  257. Gmehling, J.: Present status and potential of group contribution methods for process development. J. Chem. Thermodyn. 41, 731–747 (2009)

    CAS  Google Scholar 

  258. Nebig, S., Gmehling, J.: Measurements of different thermodynamic properties of systems containing ionic liquids and correlation of these properties using modified UNIFAC (Dortmund). Fluid Phase Equilib. 294, 206–212 (2010)

    CAS  Google Scholar 

  259. Kang, J.W., Diky, V., Chirico, A.D., Magee, J.W., Muzny, C.D., Abdulagatov, I., Kazakov, A.F., Frenkel, M.: A new method for evaluation of UNIFAC interaction parameters. Fluid Phase Equilib. 309, 68–75 (2011)

    CAS  Google Scholar 

  260. González, J.A., Alonso, I., Alonso-Tristán, C., de la Fuente, I.G., Cobos, J.C.: Thermodynamics of alkanone + aromatic hydrocarbon mixtures. Fluid Phase Equilib. 337, 125–136 (2013)

    Google Scholar 

  261. Bronneberg, R., Pfennig, A.: MOQUAC, a new expression for the excess Gibbs energy based on molecular orientations. Fluid Phase Equilib. 338, 63–77 (2013)

    CAS  Google Scholar 

  262. Bouillot, B., Teychené, S., Biscans, B.: An evaluation of thermodynamic models for the prediction of drug and drug-like molecule solubility in organic solvents. Fluid Phase Equilib. 309, 36–52 (2011)

    CAS  Google Scholar 

  263. Klamt, A., Eckert, F.: COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilib. 172, 43–72 (2000)

    CAS  Google Scholar 

  264. Lin, S.-T., Sandler, S.I.: A priori phase equilibrium prediction from a segment contribution solvation model. Ind. Eng. Chem. Res. 41, 899–913 (2002)

    CAS  Google Scholar 

  265. Panayiotou, C.: Equation-of-state models and quantum mechanics calculations. Ind. Eng. Chem. Res. 42, 1495–1507 (2003)

    CAS  Google Scholar 

  266. Grensemann, H., Gmehling, J.: Performance of a conductor-like screening model for real solvents model in comparison to classical group contribution methods. Ind. Eng. Chem. Res. 44, 1610–1624 (2005)

    CAS  Google Scholar 

  267. Wang, S., Sandler, S.I., Chen, C.-C.: Refinement of COSMO-SAC and the applications. Ind. Eng. Chem. Res. 46, 7275–7288 (2007)

    CAS  Google Scholar 

  268. Hsieh, C.-M., Lin, S.-T.: First-principle predictions of vapor–liquid equilibria for pure and mixture fluids from the combined use of cubic equations of state and solvation calculations. Ind. Eng. Chem. Res. 48, 3197–3205 (2009)

    CAS  Google Scholar 

  269. Diedenhofen, M., Klamt, A.: COSMO-RS as a tool for property prediction of IL mixtures—a review. Fluid Phase Equilib. 294, 31–38 (2010)

    CAS  Google Scholar 

  270. Hsieh, C.-M., Sandler, S.I., Lin, S.-T.: Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilib. 297, 90–97 (2010)

    CAS  Google Scholar 

  271. Panayiotou, C.: Solvation thermodynamics and non-randomness. Part I: Self-solvation. J. Chem. Eng. Data 55, 5453–5464 (2010)

    CAS  Google Scholar 

  272. Panayiotou, C.: Toward a COSMO equation-of-state model of fluids and their mixtures. Pure Appl. Chem. 83, 1221–1242 (2011)

    CAS  Google Scholar 

  273. Holderbaum, T., Gmehling, J.: PSRK: a group contribution equation of state based on UNIFAC. Fluid Phase Equilib. 70, 251–265 (1991)

    CAS  Google Scholar 

  274. Horstmann, S., Fischer, K., Gmehling, J.: PSRK group contribution equation of state: revision and extension. Fluid Phase Equilib. 167, 173–186 (2000)

    CAS  Google Scholar 

  275. Chen, J., Fischer, K., Gmehling, J.: Modification of PSRK mixing rules and results for vapor–liquid equilibria, enthalpy of mixing and activity coefficients at infinite dilution. Fluid Phase Equilib. 200, 411–429 (2002)

    CAS  Google Scholar 

  276. Ahlers, J., Gmehling, J.: Development of a universal group contribution equation of state I. Prediction of liquid densities for pure compounds with a volume translated Peng–Robinson equation of state. Fluid Phase Equilib. 191, 177–188 (2001)

    CAS  Google Scholar 

  277. Ahlers, J., Gmehling, J.: Development of a universal group contribution equation of state 2. Prediction of vapor–liquid equilibria for asymmetric systems. Ind. Eng. Chem. Res. 41, 3489–3498 (2002)

    CAS  Google Scholar 

  278. Ahlers, J., Gmehling, J.: Development of a universal group contribution equation of state III. Prediction of vapor–liquid equilibria, excess enthalpies, and activity coefficients at infinite dilution with the VTPR model. Ind. Eng. Chem. Res. 41, 5890–5899 (2002)

    CAS  Google Scholar 

  279. Schmid, B., Gmehling, J.: Revised parameters and typical results of the VTPR group contribution equation of state. Fluid Phase Equilib. 317, 110–126 (2012)

    CAS  Google Scholar 

  280. Lei, Z., Chen, B., Li, C., Liu, H.: Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids. Chem. Rev. 108, 1419–1455 (2008)

    CAS  Google Scholar 

  281. Hwa, S.C.P., Ziegler, W.T.: Temperature dependence of excess thermodynamic properties of ethanol-methylcyclohexane and ethanol-toluene systems. J. Phys. Chem. 70, 2572–2593 (1966)

    CAS  Google Scholar 

  282. Holzhauer, J.K., Ziegler, W.T.: Temperature dependence of excess thermodynamic properties of n-heptane-toluene, methylcyclohexane-toluene, and n-heptane-methylcyclohexane systems. J. Phys. Chem. 79, 590–604 (1975)

    CAS  Google Scholar 

  283. Maitland, G.C., Rigby, M., Smith, E.B., Wakeham, W.A.: Intermolecular Forces: Their Origin and Determination. Clarendon, Oxford (1981)

    Google Scholar 

  284. Stone, A.J.: The Theory of Intermolecular Forces, 2nd edn. Oxford University Press, Oxford (2013)

    Google Scholar 

  285. Kohler, F.: Zur Berechnung der Wechselwirkungsenergie zwischen ungleichen Molekülen in binären flüssigen Mischungen. Monatsh. Chem. 88, 857–877 (1957)

    CAS  Google Scholar 

  286. Kohler, F., Fischer, J., Wilhelm, E.: Intermolecular force parameters for unlike pairs. J. Mol. Struct. 84, 245–250 (1982)

    CAS  Google Scholar 

  287. Diaz Peña, M., Pando, C., Renuncio, J.A.R.: Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long-range dispersion energy. J. Chem. Phys. 76, 325–332 (1982)

    Google Scholar 

  288. Diaz Peña, M., Pando, C., Renuncio, J.A.R.: Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long-range dispersion energy and an atomic distortion model for the repulsive interactions. J. Chem. Phys. 76, 333–339 (1982)

    Google Scholar 

  289. Wertheim, M.S.: Theory of polar fluids. V. Thermodynamics and thermodynamic perturbation theory. Mol. Phys. 37, 83–94 (1979)

    CAS  Google Scholar 

  290. Wertheim, M.S.: Equilibrium statistical mechanics of polar fluids. Ann. Rev. Phys. Chem. 30, 471–501 (1979)

    CAS  Google Scholar 

  291. Haile, J.M., Mansoori, G.A. (eds.): Molecular-Based Study of Fluids. Advances in Chemistry Series, vol. 204. American Chemical Society, Washington, DC (1983)

    Google Scholar 

  292. Boublík, T., Winkelmann, J.: Perturbation theory for fluids of non-spherical polarizable dipolar molecules. Mol. Phys. 96, 435–441 (1999)

    Google Scholar 

  293. Nezbeda, I.: Towards a unified view of fluids. Mol. Phys. 103, 59–76 (2005)

    CAS  Google Scholar 

  294. Clark, G.N.I., Haslam, A.J., Galindo, A., Jackson, G.: Developing optimal Wertheim-like models of water for use in statistical associating fluid theory (SAFT) and related approaches. Mol. Phys. 104, 3561–3581 (2006)

    CAS  Google Scholar 

  295. Máté, Z., Szalai, I., Boda, D., Henderson, D.: Heat capacities of the dipolar Yukawa model polar fluid. Mol. Phys. 109, 203–208 (2011)

    Google Scholar 

  296. Elrod, M.J., Saykally, R.J.: Many-body effects in intermolecular forces. Chem. Rev. 94, 1975–1997 (1994)

    CAS  Google Scholar 

  297. Jakse, N., Bretonnet, J.-L.: Use of state-dependent pair potentials in describing the structural and thermodynamic properties of noble gases. J. Phys. Condens. Matter 15, S3455–S3466 (2003)

    CAS  Google Scholar 

  298. Guzmán, O., del Río, F., Eloy Ramos, J.: Effective potential for three-body forces in fluids. Mol. Phys. 109, 955–967 (2011)

    Google Scholar 

  299. Patterson, D.: Effects of molecular size and shape in solution thermodynamics. Pure Appl. Chem. 47, 305–314 (1976)

    CAS  Google Scholar 

  300. Grolier, J.-P.E., Inglese, A., Roux, A.H., Wilhelm, E.: Induced conformational changes in mixtures containing n-alkanes. In: Newman, S.A. (ed.) Chemical Engineering Thermodynamics, pp. 483–486. Ann Arbor Science, Ann Arbor (1982)

    Google Scholar 

  301. Patterson, D.: Structure and the thermodynamics of non-electrolyte mixtures. J. Solution Chem. 23, 105–120 (1994)

    CAS  Google Scholar 

  302. Jorgensen, W.L.: Theoretical studies of medium effects on conformational equilibria. J. Phys. Chem. 87, 5304–5314 (1983)

    CAS  Google Scholar 

  303. Wong, M.W., Frisch, M.J., Wiberg, K.B.: Solvent effects. 1. The mediation of electrostatic effects by solvents. J. Am. Chem. Soc. 113, 4776–4782 (1991)

    CAS  Google Scholar 

  304. Meléndez-Pagán, Y., Taylor, B.E., Ben-Amotz, D.: Cavity formation and dipolar contribution to the Gauche-trans isomerization of 1-chloropropane and 1,2-dichloroethane. J. Phys. Chem. B 105, 520–526 (2001)

    Google Scholar 

  305. Thomas, L.L., Christakis, T.J., Jorgensen, W.L.: Conformation of alkanes in the gas phase and pure liquids. J. Phys. Chem. B 110, 21198–21204 (2006)

    CAS  Google Scholar 

  306. Marechal, Y.: The Hydrogen Bond and the Water Molecule: The Physics and Chemistry of Water, Aqueous and Bio Media. Elsevier, Amsterdam (2007)

    Google Scholar 

  307. Gilli, G., Gilli, P.: The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. Oxford University Press, Oxford (2009)

    Google Scholar 

  308. Grabowski, S.J. (ed.): Hydrogen Bonding—New Insights. Springer, Dordrecht (2006)

    Google Scholar 

  309. Kohler, F., Atrops, H., Kalali, H., Liebermann, E., Wilhelm, E., Ratkovics, F., Salamon, T.: Molecular interactions in mixtures of carboxylic acids with amines. 1. Melting curves and viscosities. J. Phys. Chem. 85, 2520–2524 (1981)

    CAS  Google Scholar 

  310. Kohler, F., Gopal, R., Götze, G., Atrops, H., Demiriz, M.A., Liebermann, E., Wilhelm, E., Ratkovics, F., Palagyi, B.: Molecular interactions in mixtures of carboxylic acids with amines. 2. Volumetric, conductometric, and NMR properties. J. Phys. Chem. 85, 2524–2529 (1981)

    CAS  Google Scholar 

  311. Tanford, C.: The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd edn. Wiley, New York (1980)

    Google Scholar 

  312. Ben-Naim, A.: Hydrophobic Interactions. Plenum, New York (1980)

    Google Scholar 

  313. Pratt, L.R.: Molecular theory of hydrophobic effects: “She is too mean to have her name repeated”. Ann. Rev. Phys. Chem. 53, 409–436 (2002)

    CAS  Google Scholar 

  314. Southall, N.T., Dill, K.A., Haymet, A.D.J.: A view of the hydrophobic effect. J. Phys Chem. B 106, 521–533 (2002)

    CAS  Google Scholar 

  315. Ben-Amotz, D., Underwood, R.: Unraveling water’s entropic mysteries: a unified view of nonpolar, polar, and ionic hydration. Acc. Chem. Res. 41, 957–967 (2008)

    CAS  Google Scholar 

  316. Paschek, D., Ludwig, R., Holzmann, J.: Computer simulation studies of heat capacity effects associated with hydrophobic effects. In: Wilhelm, E., Letcher, T.M. (eds.) Heat Capacities: Liquids, Solutions and Vapours, pp. 436–456. The Royal Society of Chemistry/IACT & IUPAC, Cambridge (2010)

    Google Scholar 

  317. Ben-Naim, A.: The rise and fall of the hydrophobic effect in protein folding and protein–protein association and molecular recognition. Open J. Biophys. 1, 1–7 (2011)

    Google Scholar 

  318. Pople, J.A.: The statistical mechanics of systems with non-central force fields. Disc. Faraday Soc. 15, 35–43 (1953)

    Google Scholar 

  319. Guggenheim, E.A.: Mixtures. Oxford at the Clarendon Press, London (1952)

    Google Scholar 

  320. Kalali, H., Kohler, F., Svejda, P.: Excess properties of the mixture bis(2-dichloroethyl)ether (chlorex) + 2,2,4-trimethylpentane (isooctane). Monatsh. Chem. 118, 1–18 (1987)

    CAS  Google Scholar 

  321. Kohler, F., Gaube, J.: Temperature dependence of excess thermodynamic properties of mixtures and intermolecular interactions. Polish J. Chem. 54, 1987–1993 (1980)

    CAS  Google Scholar 

  322. Saint-Victor, M.-E., Patterson, D.: The W-shape concentration dependence of C E p and solution non-randomness: ketones + normal and branched alkanes. Fluid Phase Equilib. 35, 237–259 (1987)

    CAS  Google Scholar 

  323. Cobos, J.C.: An exact quasi-chemical equation for excess heat capacity with W-shaped concentration dependence. Fluid Phase Equilib. 133, 105–127 (1997)

    CAS  Google Scholar 

  324. Inglese, A., Wilhelm, E., Grolier, J.-P.E.: Paper No. 54. In: 37th Annual Calorimetry Conference. Snowbird, Utah, USA, 20–23 July (1982)

  325. Tovar, C.A., Carballo, E., Cerdeiriña, C.A., Paz Andrade, M.I., Romani, L.: Thermodynamic properties of polyoxyethyleneglycol dimethyl ether + n-alkane mixture. Fluid Phase Equilib. 136, 223–234 (1997)

    CAS  Google Scholar 

  326. Pardo, J.M., Tovar, C.A., Cerdeiriña, C.A., Carballo, E., Romani, L.: Excess quantities of dialkyl carbonate + cyclohexane mixtures at a variable temperature. Fluid Phase Equilib. 179, 151–163 (2001)

    CAS  Google Scholar 

  327. Pardo, J.M., Tovar, C.A., Troncoso, J., Carballo, E., Romani, L.: Thermodynamic behaviour of the binary systems dimethyl carbonate + n-octane or n-nonane. Thermochim. Acta 433, 128–133 (2005)

    CAS  Google Scholar 

  328. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixture. AIChE J. 14, 135–144 (1968)

    CAS  Google Scholar 

  329. Troncoso, J., Cerdeiriña, C.A., Carballo, E., Romani, L.: Quantitative analysis of the W-shaped excess heat capacities of binary liquid mixtures in the light of the local composition concept. Fluid Phase Equilib. 235, 201–210 (2005)

    CAS  Google Scholar 

  330. Greer, S.C., Moldover, M.R.: Thermodynamic anomalies at critical points of fluids. Ann. Rev. Phys. Chem. 32, 233–265 (1981)

    CAS  Google Scholar 

  331. Levelt Sengers, J.M.H.: The state of the critical state of fluids. Pure Appl. Chem. 55, 437–453 (1983)

    Google Scholar 

  332. Sengers, J.V., Levelt Sengers, J.M.H.: Thermodynamic behavior of fluids near the critical point. Ann. Rev. Phys. Chem. 37, 189–222 (1986)

    CAS  Google Scholar 

  333. Anisimov, M.A.: Critical Phenomena in Liquids and Liquid Crystals. Gordon and Breach Science, Philadelphia (1991)

    Google Scholar 

  334. Wegner, F.J.: Corrections to scaling laws. Phys. Rev. B 5, 4529–4536 (1972)

    Google Scholar 

  335. Rebillot, P.F., Jacobs, D.T.: Heat capacity anomaly near the critical point of aniline-cyclohexane. J. Chem. Phys. 109, 4009–4014 (1998)

    CAS  Google Scholar 

  336. Heimburg, T., Mirzaev, S.Z., Kaatze, U.: Heat capacity behavior in the critical region of the ionic binary mixture ethylammonium nitrate-n-octanol. Phys. Rev. E 62, 4963–4967 (2000)

    CAS  Google Scholar 

  337. Pittois, S., Van Roie, B., Glorieux, C., Thoen, J.: Static and dynamic thermal quantities near the consolute point of the binary liquid mixture aniline-cyclohexane studied with a photopyroelectric technique and adiabatic scanning calorimetry. J. Chem. Phys. 122, 024504-1–024504-8 (2005)

    Google Scholar 

  338. Utt, N.J., Lehman, S.Y., Jacobs, D.T.: Heat capacity of the liquid–liquid mixture nitrobenzene and dodecane near the critical point. J. Chem. Phys. 127, 1045051–1045055 (2007)

    Google Scholar 

  339. Markham, A.E., Kobe, K.A.: The solubility of gases in liquids. Chem. Rev. 28, 519–588 (1941)

    CAS  Google Scholar 

  340. Himmelblau, D.M.: Partial molar heats and entropies of solution for gases dissolved in water from the freezing point to near the critical point. J. Phys. Chem. 67, 1803–1808 (1959)

    Google Scholar 

  341. Himmelblau, D.M., Arends, E.: Die Löslichkeit inerter Gase in Wasser bei hohen Temperaturen und Drucken. Chemie Ing. Techn. 31, 791–795 (1959)

    CAS  Google Scholar 

  342. Himmelblau, D.M.: Solubilities of inert gases in water. 0 °C to near the critical point of water. J. Chem. Eng. Data 5, 10–15 (1960)

    CAS  Google Scholar 

  343. Battino, R., Clever, H.L.: The solubility of gases in liquids. Chem. Rev. 66, 395–463 (1966)

    CAS  Google Scholar 

  344. Pierotti, R.A.: A scaled particle theory of aqueous and nonaqueous solutions. Chem. Rev. 76, 717–726 (1976)

    CAS  Google Scholar 

  345. Goldman, S.: A modern approach to nonelectrolyte solubility theory. Acc. Chem. Res. 12, 409–415 (1979)

    CAS  Google Scholar 

  346. Hepler, L.G.: Thermodynamics of dilute solutions. Pure Appl. Chem. 55, 493–504 (1983)

    Google Scholar 

  347. Hefter, G.T., Tomkins, R.P.T. (eds.): The Experimental Determination of Solubilities. Wiley Series in Solution Chemistry, vol. 6. Wiley, Chichester (2003)

    Google Scholar 

  348. Pierotti, R.A.: Aqueous solutions of nonpolar gases. J. Phys. Chem. 69, 281–288 (1965)

    CAS  Google Scholar 

  349. Wilhelm, E., Battino, R.: Estimation of Lennard-Jones (6,12) pair potential parameters from gas solubility data. J. Chem. Phys. 55, 4012–4017 (1971)

    CAS  Google Scholar 

  350. Wilhelm, E.: On the temperature dependence of the effective hard sphere diameter. J. Chem. Phys. 58, 3558–3560 (1973)

    CAS  Google Scholar 

  351. Pierotti, R.A.: The solubility of gases in liquids. J. Phys. Chem. 67, 1840–1845 (1963)

    CAS  Google Scholar 

  352. Pierotti, R.A.: On the scaled-particle theory of dilute aqueous solutions. J. Phys. Chem. 71, 2366–2367 (1967)

    CAS  Google Scholar 

  353. Wilhelm, E., Battino, R.: On solvophobic interaction. J. Chem. Phys. 56, 563–566 (1972)

    CAS  Google Scholar 

  354. Schaffer, S.K., Prausnitz, J.M.: Correlation of hydrogen solubilities in nonpolar solvents based on scaled-particle theory. AIChE J. 27, 844–848 (1981)

    CAS  Google Scholar 

  355. Schulze, G., Prausnitz, J.M.: Solubilities of gases in water at high temperatures. Ind. Eng. Chem. 20, 175–177 (1981)

    CAS  Google Scholar 

  356. Rettich, T.R., Battino, R., Wilhelm, E.: Solubility of gases in liquids. 15. High-precision determination of Henry coefficients for carbon monoxide in liquid water at 278 to 323 K. Ber. Bunsenges. Phys. Chem. 86, 1128–1132 (1982)

    CAS  Google Scholar 

  357. Rettich, T.R., Battino, R., Wilhelm, E.: Solubility of gases in liquids. 18. High-precision determination of Henry fugacities for argon in liquid water at 2 to 40 °C. J. Solution Chem. 21, 987–1004 (1992)

    CAS  Google Scholar 

  358. Battino, R., Evans, F.D., Danforth, W.F., Wilhelm, E.: The solubility of gases in liquids. 2. The solubility of He, Ne, Ar, Kr, N2, O2, CO and CO2 in 2-methyl-1-propanol (1 to 55 °C). J. Chem. Thermodyn. 3, 743–751 (1971)

    CAS  Google Scholar 

  359. Frank, H.S., Evans, M.W.: Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507–532 (1945)

    CAS  Google Scholar 

  360. Pratt, L.R., Chandler, D.: Theory of the hydrophobic effect. J. Chem. Phys. 67, 3683–3704 (1977)

    CAS  Google Scholar 

  361. Privalov, P.L., Gill, S.J.: The hydrophobic effect: a reappraisal. Pure Appl. Chem. 61, 1097–1104 (1989)

    CAS  Google Scholar 

  362. Blokzijl, W., Engberts, J.B.F.N.: Hydrophobic effects. Opinions and facts. Angew. Chem. Int. Ed. Engl. 32, 1545–1579 (1993)

    Google Scholar 

  363. Lum, K., Chandler, D., Weeks, J.D.: Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999)

    CAS  Google Scholar 

  364. Southall, N.T., Dill, K.A.: The mechanism of hydrophobic solvation depends on solute radius. J. Phys. Chem. B 104, 1326–1331 (2000)

    CAS  Google Scholar 

  365. Hummer, G., Garde, S., Garcia, A.E., Pratt, L.R.: New perspectives on hydrophobic effects. Chem. Phys. 258, 349–370 (2000)

    CAS  Google Scholar 

  366. Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005)

    CAS  Google Scholar 

  367. Levy, Y., Onuchic, J.N.: Water mediation in protein folding and molecular recognition. Annu. Rev. Biophys. Biomol. Struct. 35, 389–415 (2006)

    CAS  Google Scholar 

  368. Ball, P.: Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008)

    CAS  Google Scholar 

  369. Patel, A.J., Varilly, P., Chandler, D.: Fluctuations of water near extended hydrophobic and hydrophilic surfaces. J. Phys. Chem. B 114, 1632–1637 (2010)

    CAS  Google Scholar 

  370. Ben-Naim, A., Baer, S.: Method for measuring solubilities of slightly soluble gases in liquids. Trans. Faraday Soc. 59, 2735–2738 (1963)

    CAS  Google Scholar 

  371. Tominaga, T., Battino, R., Gorowara, H.K., Dixon, R.D., Wilhelm, E.: Solubility of gases in liquids. 17. The solubility of He, Ne, Ar, Kr, H2, N2, O2, CO, CH4, CF4, and SF6 in tetrachloromethane at 283–318 K. J. Chem. Eng. Data 31, 175–180 (1986)

    CAS  Google Scholar 

  372. Bo, S., Battino, R., Wilhelm, E.: Solubility of gases in liquids. 19. Solubility of He, Ne, Ar, Kr, Xe, N2, O2, CH4, CF4, and SF6 in normal 1-alkanols n-C l H2l+1OH (1 ≤ l ≤ 11) at 298.15 K. J. Chem. Eng. Data 38, 611–616 (1993); Correction. J. Chem. Eng. Data 41, 644 (1996)

  373. Hesse, P.J., Battino, R., Scharlin, P., Wilhelm, E.: Solubility of gases in liquids. 20. Solubility of He, Ne, Ar, Kr, N2, O2, CH4, CF4, and SF6 in n-alkanes n-C l H2l+2 (6 ≤ l ≤ 16) at 298.15 K. J. Chem. Eng. Data 41, 195–201 (1996)

    CAS  Google Scholar 

  374. Vosmansky, J., Dohnal, V.: Gas solubility measurements with an apparatus of the Ben-Naim-Baer type. Fluid Phase Equilib. 33, 137–155 (1987)

    CAS  Google Scholar 

  375. Fonseca, I.M.A., Almeida, J.P.B., Fachada, H.C.: Automated apparatus for gas solubility measurements. J. Chem. Thermodyn. 39, 1407–1411 (2007)

    CAS  Google Scholar 

  376. Benson, B.B., Krause Jr, D.: Empirical laws for dilute aqueous solutions of nonpolar gases. J. Chem. Phys. 64, 689–709 (1976)

    CAS  Google Scholar 

  377. Benson, B.B., Krause Jr, D., Peterson, M.A.: The solubility and isotopic fractionation of gases in dilute aqueous solutions. I. Oxygen. J. Solution Chem. 8, 655–690 (1979)

    CAS  Google Scholar 

  378. Battino, R., Banzhof, M., Bogan, M., Wilhelm, E.: Apparatus for rapid degassing of liquids. Part III. Analyt. Chem. 43, 806–807 (1971)

    CAS  Google Scholar 

  379. Clarke, E.C.W., Glew, D.N.: Evaluation of thermodynamic functions from equilibrium constants. Trans. Faraday Soc. 62, 539–547 (1966)

    CAS  Google Scholar 

  380. Bolton, P.D.: Calculation of thermodynamic functions from equilibrium data. J. Chem. Educ. 47, 638–641 (1970)

    CAS  Google Scholar 

  381. Wauchope, R.D., Haque, R.: Aqueous solutions of nonpolar compounds. Heat-capacity effects. Can. J. Chem. 50, 133–138 (1972)

    CAS  Google Scholar 

  382. Valentiner, S.: Über die Löslichkeit der Edelgase in Wasser. Z. Phys. 42, 253–264 (1927)

    CAS  Google Scholar 

  383. Wilhelm, E.: Dilute solutions of gases in liquids. Fluid Phase Equilib. 27, 233–261 (1986)

    CAS  Google Scholar 

  384. Wilhelm, E.: The solubility of gases in liquids. Thermodynamic considerations. In: Battino, R. (ed.) Solubility Data Series (IUPAC), vol. 10, pp. XX–XXVIII. Pergamon, Oxford (1982)

  385. Crovetto, R., Fernández-Prini, R., Japas, M.L.: Solubilities of inert gases and methane in H2O and in D2O in the temperature range of 300 to 600 K. J. Chem. Phys. 76, 1077–1086 (1982)

    CAS  Google Scholar 

  386. Figura, L.O., Cammenga, H.K.: Die In-line-Strippzelle in der GC-Bestimmung von gelösten Gasen in wäßrigen Matrices. GIT Fachz. Lab., pp. 988–994 (10/1989)

  387. Schotte, W.: Solubilities near the solvent critical point. AIChE J. 31, 154–157 (1985)

    CAS  Google Scholar 

  388. Japas, M.L., Levelt Sengers, J.M.H.: Gas solubility and Henry’s law near the solvent’s critical point. AIChE J. 35, 705–713 (1989)

    CAS  Google Scholar 

  389. Krause Jr, D., Benson, B.B.: The solubility and isotopic fractionation of gases in dilute aqueous solutions. IIa. Solubilities of the noble gases. J. Solution Chem. 18, 823–873 (1989)

    CAS  Google Scholar 

  390. Biggerstaff, D.R., Wood, R.H.: Apparent molar volumes of aqueous argon, ethylene, and xenon from 300 to 716 K. J. Phys. Chem. 92, 1988–1994 (1988)

    CAS  Google Scholar 

  391. Hnedkovský, L., Wood, R.H., Majer, V.: Volumes of aqueous solutions of CH4, CO2, H2S, and NH3 at temperatures from 298.15 K to 705 K and pressures to 35 MPa. J. Chem. Thermodyn. 28, 125–142 (1996)

    Google Scholar 

  392. Chang, R.F., Levelt Sengers, J.M.H.: Behavior of dilute mixtures near the solvent’s critical point. J. Phys. Chem. 90, 5921–5927 (1986)

    CAS  Google Scholar 

  393. Levelt Sengers, J.M.H.: Thermodynamics of solutions near the solvent’s critical point. In: Bruno, T.J., Ely, J.F. (eds.) Supercritical Fluid Technology: Reviews in Modern Theory and Applications, pp. 1–56. CRC, Boca Raton (1991)

    Google Scholar 

  394. Biggerstaff, D.R., White, D.E., Wood, R.H.: Heat capacities of aqueous argon from 306 to 578 K. J. Phys. Chem. 89, 4378–4381 (1985)

    CAS  Google Scholar 

  395. Biggerstaff, D.R., Wood, R.H.: Apparent molar heat capacities of aqueous argon, ethylene, and xenon at temperatures up to 720 K and pressures to 33 MPa. J. Phys. Chem. 92, 1994–2000 (1988)

    CAS  Google Scholar 

  396. Hnedkovský, L., Wood, R.H.: Apparent molar heat capacities of aqueous solutions of CH4, CO2, H2S, and NH3 at temperatures from 304 K to 704 K at a pressure of 28 MPa. J. Chem. Thermodyn. 29, 731–747 (1997)

    Google Scholar 

  397. Battino, R., Marsh, K.N.: An isothermal displacement calorimeter for the measurement of the enthalpy of solution of gases. Aust. J. Chem. 33, 1997–2003 (1980)

    CAS  Google Scholar 

  398. Gill, S.J., Wadsö, I.: Flow-microcalorimetric techniques for solution of slightly soluble gases. Enthalpy of solution of oxygen in water at 298.15 K. J. Chem. Thermodyn. 14, 905–919 (1982)

    CAS  Google Scholar 

  399. Dec, S.F., Gill, S.J.: Steady-state gas dissolution flow microcalorimeter for determination of heats of solution of slightly soluble gases in water. Rev. Sci. Instrum. 55, 765–772 (1984)

    CAS  Google Scholar 

  400. Murray, C.N., Riley, J.P.: The solubility of gases in distilled water and sea water—III argon. Deep Sea Res. 17, 203–209 (1970)

    CAS  Google Scholar 

  401. Olofsson, G., Oshodj, A.A., Qvarnström, E., Wadsö, I.: Calorimetric measurements on slightly soluble gases in water. Enthalpies of solution of helium, neon, argon, krypton, xenon, methane, ethane, propane, n-butane, and oxygen at 288.15, 298.15, and 308.15 K. J. Chem. Thermodyn. 16, 1041–1052 (1984)

    CAS  Google Scholar 

  402. Dec, S.F., Gill, S.J.: Enthalpies of aqueous solutions of noble gases at 25 °C. J. Solution Chem. 14, 417–429 (1985)

    CAS  Google Scholar 

  403. Alexander, D.M.: A calorimetric measurement of the heats of solution of the inert gases in water. J. Phys. Chem. 63, 994–996 (1959)

    CAS  Google Scholar 

  404. Schäfer, K., Lax, E. (eds.): Landolt-Börnstein, 6. Auflage, II. Band, 4. Teil: Kalorische Zustandsgrößen. Springer, Berlin, (1961)

  405. Klots, C.E., Benson, B.B.: Thermodynamic properties of the atmospheric gases in aqueous solutions. J. Phys. Chem. 67, 933–934 (1963)

    CAS  Google Scholar 

  406. Naghibi, H., Dec, S.F., Gill, S.J.: Heat of solution of methane in water from 0 to 50 °C. J. Phys. Chem. 90, 4621–4623 (1986)

    CAS  Google Scholar 

  407. Dec, S.F., Gill, S.J.: Heats of solution of gaseous hydrocarbons in water at 25 °C. J. Solution Chem. 13, 27–41 (1984)

    CAS  Google Scholar 

  408. Dec, S.F., Gill, S.J.: Heats of solution of gaseous hydrocarbons in water at 15, 25, and 35 °C. J. Solution Chem. 14, 827–836 (1985)

    CAS  Google Scholar 

  409. Franks, F. (ed.): Water: A Comprehensive Treatise, vols. I–VII. Plenum, New York (1972–1982)

  410. Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry. Part I: The Conformation of Biological Macromolecules; Part II: Techniques for the Study of Biological Structure and Function; Part III: The Behavior of Biological Macromolecules. W.H. Freeman, San Francisco (1980)

  411. Franks, F.: Water: A Matrix of Life, 2nd edn. The Royal Society of Chemistry, Cambridge (2000)

    Google Scholar 

  412. van Holde, K.E., Johnson, W.C., Shing Ho, P.: Principles of Biophysical Chemistry, 2nd edn. Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  413. Brovchenko, I.O., Oleinikova, A.: Interfacial and Confined Water. Elsevier, Amsterdam (2008)

    Google Scholar 

  414. Pohorille, A., Wilson, M.A.: Viewpoint 9—molecular structure of aqueous interfaces. J. Mol. Struct. Theochem 284, 271–298 (1993)

    CAS  Google Scholar 

  415. Raymond, E.A., Richmond, G.L.: Probing the molecular structure and bonding of the surface of aqueous salt solutions. J. Phys. Chem. B 108, 5051–5059 (2004)

    CAS  Google Scholar 

  416. Petersen, P.B., Saykally, R.J.: On the nature of ions at the liquid water surface. Annu. Rev. Phys. Chem. 57, 333–364 (2006)

    CAS  Google Scholar 

  417. Wick, C.D., Kuo, I.-F.W., Mundy, J.C., Dang, L.X.: The effect of polarizability for understanding the molecular structure of aqueous interfaces. J. Chem. Theory Comput. 3, 2002–2010 (2007)

    CAS  Google Scholar 

  418. Stevens, M.J., Grest, G.S.: Simulations of water at the interface with hydrophilic self-assembled monolayers. Biointerphases 3, FC13–FC22 (2008)

    CAS  Google Scholar 

  419. Yancey, J.A., Vellore, N.A., Collier, G., Stuart, S.J., Latour, R.A.: Development of molecular simulation methods to accurately represent protein-surface interactions: The effect of pressure and its determination for a system with constrained atoms. Biointerphases 5, 85–95 (2010)

    CAS  Google Scholar 

  420. Zhang, C., Raugei, S., Eisenberg, B., Carloni, P.: Molecular dynamics in physiological solutions: force fields, alkali metal ions, and ionic strength. J. Chem. Theory Comput. 6, 2167–2175 (2010)

    CAS  Google Scholar 

  421. Bresme, F., Chacón, E., Tarazona, P., Wynveen, A.: The structure of ionic aqueous solutions at interfaces: an intrinsic structure analysis. J. Chem. Phys. 137, 1147061–11470610 (2012)

    Google Scholar 

  422. Stannard, R.: The End of Discovery: Are We Approaching the Boundaries of the Knowable?. Oxford University Press, Oxford (2010)

    Google Scholar 

  423. International Union of Pure and Applied Chemistry: Quantities Units and Symbols in Physical Chemistry. RSC, Cambridge (2007)

    Google Scholar 

  424. Prigogine, I., Defay, R.: Chemical Thermodynamics. Translated and revised by Everett. D.H. Longmans, Green, London (1954)

  425. Griffiths, R.B., Wheeler, J.C.: Critical points in multicomponent systems. Phys. Rev. A 2, 1047–1064 (1970)

    Google Scholar 

  426. Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical constants: 2006. Rev. Mod. Phys. 80, 633–730 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmerich Wilhelm.

Additional information

Communicated in part by Emmerich Wilhelm as a Plenary Lecture at the 20. Ulm-Freiberger Kalorimetrietage (20th UFK) in Freiberg, Saxony, Germany, February 27–March 1, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, E. Chemical Thermodynamics: A Journey of Many Vistas. J Solution Chem 43, 525–576 (2014). https://doi.org/10.1007/s10953-014-0140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0140-0

Keywords

Navigation