Skip to main content
Log in

The History of Interferometry for Measuring Diffusion Coefficients

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Quod fluit in unam partem fluit: nemo aquam fluere dicit, si tantum intra se movetur, sed si aliquot fertur; potest ergo aliquid moveri et non fluere et e contrario non potest fluere nisi in unam partem.

(Seneca, Naturales quaestiones. V 1,4).

(What is moving to some direction does flow: nobody can say that water flows if it is moving only inside itself but only if it is running somewhere. Therefore (something) a liquid can move but not flow and can flow if it is moving to some direction).

Abstract

The history of the development and use of interferometric and other optical techniques for the measurements of diffusion coefficients in liquid mixtures is reviewed. The greatest emphasis is on Gouy and Rayleigh interferometry because they have been extensively developed to yield the most precise results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Editor’s note: the 45 and 35 years ago refer to when this lecture was presented in 1999.

  2. Editor’s note: Section 2 refers to a section of the initial publication of this history, as described at the bottom of the first page of this article, which is not included here.

References

  1. Tyrrell, H.J.V., Harris, K.R.: Diffusion in Liquids. Butterworths, London (1984)

    Google Scholar 

  2. Svensson, H., Thompson, T.E.: Translational diffusion methods in protein chemistry. In: Alexander, R., Block, R.J. (eds.) A Laboratory Manual of Analytical Methods in Protein Chemistry, vol. 3, chap. 3, pp. 57–118. Pergamon, New York (1961)

    Google Scholar 

  3. Dunlop, P.J., Steel, B.J., Lane, J.E.: Experimental methods for studying diffusion in liquids, gases, and solids. In: Weissberger, A., Rossiter, B.W. (eds.) Physical Methods of Chemistry, vol. 1, part IV, chap. IV, pp. 205–349. Wiley, New York (1972)

    Google Scholar 

  4. Miller, D.G., Albright, J.G.: Optical methods. Section 9.1.6 of chap. 9, Diffusion. In: Wakeham, W.A., Nagashima, A., Sengers, J.V. (eds.) Measurement of the Transport Properties of Fluids: Experimental Thermodynamics, vol. III, pp. 272–294 (references pp. 316–319). Blackwell Scientific Publications, Oxford (1991)

  5. Fujita, H., Gosting, L.J.: An exact solution of the equations for free diffusion in three-component systems with interacting flows, and its use in evaluation of the diffusion coefficients. J. Am. Chem. Soc. 78, 1099–1106 (1956)

    Article  CAS  Google Scholar 

  6. Fujita, H., Gosting, L.J.: A new procedure for calculating the four diffusion coefficients of three-component systems from Gouy diffusiometer data. J. Phys. Chem. 64, 1256–1263 (1960)

    Article  CAS  Google Scholar 

  7. Eppstein L.B., Miller D.G.: Unpublished ternary D ij for NaCl–MgCl2–H2O (1973)

  8. Miller, D.G., Ting, A.W., Rard, J.A., Eppstein, L.B.: Ternary diffusion coefficients of the brine systems NaCl(0.5 M)–Na2SO4(0.5 M)–H2O and NaCl(0.489 M)–MgCl2(0.051 M)–H2O (seawater composition) at 25 °C. Geochim. Cosmochim. Acta 50, 2397–2403 (1986)

    Article  CAS  Google Scholar 

  9. Kim, H.: Procedures for isothermal diffusion studies of four-component systems. J. Phys. Chem. 70, 562–575 (1966)

    Article  CAS  Google Scholar 

  10. Kim, H.: Combined use of various experimental techniques for the determination of nine diffusion coefficients in four-component systems. J. Phys. Chem. 73, 1716–1722 (1969)

    Article  CAS  Google Scholar 

  11. Miller, D.G.: Unpublished method for extraction of 9 D ij for 4-component systems (1973)

  12. Miller, D.G.: A method for obtaining multicomponent diffusion coefficients directly from Rayleigh and Gouy fringe positions. J. Phys. Chem. 92, 4222–4226 (1988)

    Article  CAS  Google Scholar 

  13. Gouy, G.: Sur de nouvelles franges d’interférence. C. R. Seances Soc. 90, 307–309 (1880)

    Google Scholar 

  14. Thovert, M.J.: Recherches sur la diffusion: Généralités sur les observations optiques. Ann. Chim. Phys. 26, 366–432 (1902)

    Google Scholar 

  15. Vitagliano, V.: Misure dei coefficienti differenziali di diffusione nelle soluzioni acquose di LiCl a 0–18–25–35–50 °C. Gazz. Chim. Ital. 90, 876–893 (1960)

    CAS  Google Scholar 

  16. Tiselius, A., Pedersen, K.O., Erikson-Quesnel, I.-B.: Observation of ultracentrifugal sedimentation by Toepler “Schlieren” method. Nature (London) 139, 546 (1937)

    Article  CAS  Google Scholar 

  17. Thovert, M.J.: Recherches sur la diffusion des solutions. Ann. Phys. 2, 369–427 (1914)

    Google Scholar 

  18. Philpot, J.St.L.: Direct photography of ultracentrifuge sedimentation curves. Nature (London) 141, 283–285 (1938)

    Article  CAS  Google Scholar 

  19. Svensson, H.: Direkte photographische aufnahme von electrophoresediagrammen. Kolloid-Z. 87, 181–186 (1939)

    Article  CAS  Google Scholar 

  20. Svensson, H.: Theorie der Beobachtungsmethode der gekreuzten Spalte. Kolloid-Z. 90, 141–156 (1940)

    Article  CAS  Google Scholar 

  21. Coulson, C.A., Cox, J.T., Ogston, A.G., Philpot, J.St.L.: A rapid method for determining diffusion constants in solution. Proc. R Soc. (London) 192A, 382–402 (1948)

    Article  Google Scholar 

  22. Ogston, A.G.: The Gouy diffusiometer; further calibration. Proc. R Soc. (London) 196A, 272–285 (1949)

    Article  Google Scholar 

  23. Longsworth, L.G.: The diffusion of macromolecules and electrolytes in solution: a historical survey. Ann. N. Y. Acad. Sci. 46, 211–246 (1945)

    Article  CAS  Google Scholar 

  24. Longsworth, L.G.: Experimental; tests of an interference method for the study of diffusion. J. Am. Chem. Soc. 69, 2510–2516 (1947)

    Article  CAS  Google Scholar 

  25. Kegeles, G., Gosting, L.J.: The theory of an interference method for the study of diffusion. J. Am. Chem. Soc. 69, 2516–2523 (1947)

    Article  CAS  Google Scholar 

  26. Gosting, L.J., Hanson, E.M., Kegeles, G., Morris, M.S.: Equipment and experimental methods for interference diffusion studies. Rev. Sci. Instrum. 20, 209–215 (1949)

    Article  CAS  Google Scholar 

  27. Gosting, L.J., Morris, M.S.: Diffusion studies on dilute aqueous sucrose solutions at 1 and 25° with the Gouy interference method. J. Am. Chem. Soc. 71, 1998–2006 (1949)

    Article  CAS  Google Scholar 

  28. Gosting, L.J.: A study of the diffusion of potassium chloride in water at 25° with the Gouy interference method. J. Am. Chem. Soc. 72, 4418–4422 (1950)

    Article  CAS  Google Scholar 

  29. Onsager, L.: Theories and problems of liquid diffusion. Ann. N. Y. Acad. Sci. 46, 241–266 (1945)

    Article  CAS  Google Scholar 

  30. Gosting, L.J., Onsager, L.: A general theory for the Gouy diffusion method. J. Am. Chem. Soc. 74, 6066–6074 (1952)

    Article  CAS  Google Scholar 

  31. Dunlop, P.J., Gosting, L.J.: Interacting flows in liquid diffusion: expressions for the solute concentration curves in free diffusion and their use in interpreting Gouy diffusiometer data for aqueous three-component systems. J. Am. Chem. Soc. 77, 5238–5249 (1955)

    Article  CAS  Google Scholar 

  32. Miller, D.G.: The validity of Onsager’s reciprocal relations in ternary diffusion. J. Phys. Chem. 62, 767 (1958)

    Article  CAS  Google Scholar 

  33. Miller, D.G.: Ternary isothermal diffusion and the validity of the Onsager reciprocity relations. J. Phys. Chem. 63, 570–578 (1959)

    Article  CAS  Google Scholar 

  34. Dunlop, P.J., Gosting, L.J.: Use of diffusion and thermodynamic data to test the Onsager reciprocal relation for isothermal diffusion in the system NaCl–KCl–H2O at 25°. J. Phys. Chem. 63, 86–93 (1959)

    Article  CAS  Google Scholar 

  35. Miller, D.G.: Thermodynamics of irreversible processes. The experimental verification of the Onsager reciprocal relations. Chem. Rev. 60, 15–37 (1960)

    Article  CAS  Google Scholar 

  36. Gosting, L.J., Kim, H., Loewenstein, M.A., Reinfelds, G., Revzin, A.: A versatile optical diffusiometer including a large optical bench of new design. Rev. Sci. Instrum. 44, 1602–1609 (1973)

    Article  Google Scholar 

  37. Riley, J.F., Lyons, P.A.: Intensity measurements applied to Gouy diffusiometry. J. Am. Chem. Soc. 77, 261–264 (1955)

    Article  CAS  Google Scholar 

  38. Renner, T.A., Lyons, P.A.: Computer-recorded Gouy interferometric diffusion and the Onsager–Gosting theory. J. Phys. Chem. 78, 2050–2054 (1974)

    Article  CAS  Google Scholar 

  39. Vitagliano, V.: Introduzione allo Studio della Diffusione nei Liquidi. G D’Agostino, Napoli (1959)

    Google Scholar 

  40. Calvet, E.: Nouvelle méthode d’étude de la diffusion dans les liquides. Mesure des coefficients de diffusion. C. R. Seances Soc. 220, 597–599 (1945)

    CAS  Google Scholar 

  41. Calvet, E.: Diffusion dans les liquides. Obtention directe du réseau des courbes f(x, t, c) = 0. C. R. Seances Soc. 221, 403–405 (1945)

    CAS  Google Scholar 

  42. Calvet, E., Chevalerias, R.: A new interferometric method for the study of diffusion in liquids. J. Chim. Phys. 43, 37–53 (1946)

    CAS  Google Scholar 

  43. Svennson, H.: On the use of Rayleigh–Philpot–Cook interference fringes for the measurement of diffusion coefficients. Acta Chim. Scand. 5, 72–84 (1951)

    Article  Google Scholar 

  44. Philpot, J.St.L., Cook, G.H.: A self-plotting interferometric optical system for the ultracentrifuge. Research 1, 234–236 (1948)

    CAS  Google Scholar 

  45. Svensson, H.: An optical arrangement for getting simultaneous records of the refractive index and its derivative for stratified solutions. Acta Chim. Scand. 4, 399–403 (1950)

    Article  CAS  Google Scholar 

  46. Svensson, H.: The second-order aberrations in the interferometric measurement of concentration gradients. Opt. Acta 1, 25–32 (1954)

    Article  Google Scholar 

  47. Svensson, H.: The third-order aberrations in the interferometric measurement of concentration gradients. Opt. Acta 3, 164–183 (1956)

    Article  Google Scholar 

  48. Longsworth, L.G.: Interferometry in electrophoresis. Anal. Chem. 23, 346–348 (1951)

    Article  CAS  Google Scholar 

  49. Gosting, L.J., Fujita, H.: Interpretation of data for concentration-dependent free diffusion in two-component systems. J. Am. Chem. Soc. 79, 1359–1366 (1955)

    Article  Google Scholar 

  50. Creeth, J.M.: Studies of free diffusion in liquids with the Rayleigh method. I. The determination of differential diffusion coefficients in concentration-dependent systems of two components. J. Am. Chem. Soc. 77, 6428–6440 (1955)

    Article  CAS  Google Scholar 

  51. Creeth, J.M., Gosting, L.J.: Studies of free diffusion in liquids with the Rayleigh method. II. An analysis for systems containing two solutes. J. Phys. Chem. 62, 58–65 (1958)

    Article  CAS  Google Scholar 

  52. Sundelöf, L.-O.: Determination of distributions of molecular size parameters by a convolution procedure. Ark. Kemi 25(1), 1–65 (1965)

    Google Scholar 

  53. Albright, J.G., Miller, D.G.: Mutual diffusion coefficients at 25° in the system silver nitrate–water. J. Phys. Chem. 76, 1853–1857 (1972)

    Article  CAS  Google Scholar 

  54. Miller, D.G.: Series expansion methods for extracting ternary diffusion coefficients from Rayleigh interferometric data. J. Solution Chem. 10, 831–846 (1981)

    Article  CAS  Google Scholar 

  55. Miller, D.G., Albright, J.G., Mathew, R., Lee, C.M., Rard, J.A., Eppstein, L.B.: Isothermal diffusion coefficients of NaCl–MgCl2–H2O at 25°C. 5. Solute concentration ratio of 1:1 and some Rayleigh results. J. Phys. Chem. 97, 3885–3899 (1993)

    Article  CAS  Google Scholar 

  56. Albright, J.G., Miller, D.G.: Analysis of free diffusion in a binary system when the diffusion coefficient is a function of the square root of concentration. J. Phys. Chem. 79, 2061–2068 (1975)

    Article  CAS  Google Scholar 

  57. Albright, J.G., Miller, D.G.: Analysis of Gouy interference patterns from binary free-diffusion systems when the diffusion coefficient and refractive index have C 1/2 and C 3/2 terms, respectively. J. Phys. Chem. 84, 1400–1413 (1980)

    Article  CAS  Google Scholar 

  58. Miller, D.G., Paduano, L., Sartorio, R., Albright, J.G.: Analysis of Gouy fringe data and comparison of Rayleigh and Gouy optical diffusion measurements using the system raffinose(0.015 M)–KCl(0.5 M)–H2O at 25°C. J. Phys. Chem. 98, 13745–13754 (1994)

    Article  CAS  Google Scholar 

  59. Miller, D.G., Sartorio, R., Paduano, L., Rard, J.A., Albright, J.G.: Effects of different sized concentration differences across free diffusion boundaries and comparison of Gouy and Rayleigh diffusion measurements using NaCl–KCl–H2O. J. Solution Chem. 25, 1185–1211 (1996)

    Article  CAS  Google Scholar 

  60. Albright, J.G., Miller, D.G.: Nonlinear regression programs for the analysis of Gouy fringe patterns from isothermal free diffusion experiments on three-component systems. J. Phys. Chem. 93, 2169–2175 (1989)

    Article  CAS  Google Scholar 

  61. Ambrosone, L., Vitagliano, V., Della Volpe, C., Sartorio, R.: Non ideality in free diffusion boundaries. J. Solution Chem. 20, 271–291 (1991)

    Article  CAS  Google Scholar 

  62. Miller, D.G., Rard, J.A., Eppstein, L.B., Albright, J.G.: Mutual diffusion coefficients and ionic transport coefficients l ij of MgCl2–H2O at 25°C. J. Phys. Chem. 88, 5739–5748 (1984)

    Article  CAS  Google Scholar 

  63. Rard, J.A., Albright, J.G., Miller, D.G., Zeidler, M.E.: Ternary mutual diffusion coefficients and densities of the system {z1NaCl + (1 − z1)Na2SO4}(aq) at 298.15 K and a total molarity of 0.5000 mol dm−3. J. Chem. Soc. Faraday Trans. 92, 4187–4197 (1996)

    Article  CAS  Google Scholar 

  64. Albright, J.G., Annunziata, O., Miller, D.G., Paduano, L., Pearlstein, A.J.: Precision measurements of binary and multicomponent diffusion coefficients in protein solutions relevant to crystal growth: lysozyme chloride in water and aqueous NaCl at pH 4.5 and 25 °C. J. Am. Chem. Soc. 121, 3256–3266 (1999)

    Article  CAS  Google Scholar 

  65. Annunziata, O., Paduano, L., Pearlstein, A.J., Miller, D.G., Albright, J.G.: Extraction of thermodynamic data from ternary diffusion coefficients. Use of precision diffusion measurements for aqueous lysozyme chloride–NaCl at 25 °C to determine the change of lysozyme chloride chemical potential with increasing NaCl concentration well into the supersaturated region. J. Am. Chem. Soc. 122, 5916–5928 (2000)

    Article  CAS  Google Scholar 

  66. Paduano, L., Annunziata, O., Pearlstein, A.J., Miller, D.G., Albright, J.G.: Precision measurement of ternary diffusion coefficients and implications for protein crystal growth: lysozyme chloride in aqueous ammonium chloride at 25 °C. J. Crystal Growth 232, 273–284 (2001)

    Article  CAS  Google Scholar 

  67. Annunziata, O., Paduano, L., Pearlstein, A.J., Miller, D.G., Albright, J.G.: The effect of salt on protein chemical potential determined by ternary diffusion in aqueous solutions. J. Phys. Chem. B 110, 1405–1415 (2006)

    Article  CAS  Google Scholar 

  68. Annunziata, O., Buzatu, D., Albright, J.G.: Protein diffusion coefficients determined by macroscopic-gradient Rayleigh interferometry and dynamic light scattering. Langmuir 21, 12085–12089 (2005)

    Article  CAS  Google Scholar 

  69. Paduano, L., Sartorio, R., Vitagliano, V., Albright, J.G., Miller, D.G.: Measurement of the mutual diffusion coefficients at one composition of the four-component system α-cyclodextrin–l-phenylalanine–monobutylurea–H2O at 25 °C. J. Phys. Chem. 96, 7478–7483 (1992)

    Article  CAS  Google Scholar 

  70. Annunziata, O., Vergara, A., Paduano, L., Sartorio, R., Miller, D.G., Albright, J.G.: Precision of interferometric diffusion coefficients in a 4-component system relevant to protein crystal growth: lysozyme–tetra(ethylene glycol)–NaCl–H2O. J. Phys. Chem. B 107, 6590–6597 (2003)

    Article  CAS  Google Scholar 

  71. Miller, D.G.: Equal eigenvalues in multicomponent diffusion: the extraction of diffusion coefficients from experimental data in ternary systems. In: Purdy, G.R. (ed.) Fundamentals and Applications of Ternary Diffusion. Proceedings of the International Symposium, 29th Annual Conference of Metallurgists of CIM (Hamilton, Ontario, August 27–28), pp. 29–40. Pergamon Press, New York (1990)

  72. Miller, D.G., Vitagliano, V., Sartorio, R.: Some comments on multicomponent diffusion: negative main term diffusion coefficients, second law constraints, and reference frame transformations. J. Phys. Chem. 90, 1509–1519 (1986)

    Article  CAS  Google Scholar 

  73. Miller, D.G.: A liquid state least-squares procedure for obtaining solid state multicomponent diffusion coefficients from diffusion couples. Acta Mater. 48, 5993–5999 (1998)

    Article  Google Scholar 

  74. Longsworth, L.G.: The diffusion of hydrogen bonding solutes in carbon tetrachloride. J. Colloid Interface Sci. 22, 3–11 (1966)

    Article  CAS  Google Scholar 

  75. McDougall, T.J.: Double-diffusive convection caused by coupled molecular diffusion. J. Fluid Mech. 126, 379–397 (1983)

    Article  Google Scholar 

  76. Miller, D.G., Vitagliano, V.: Experimental tests of McDougall’s theory for the onset of convective instabilities in isothermal ternary systems. J. Phys. Chem. 90, 1706–1717 (1986)

    Article  CAS  Google Scholar 

  77. Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R Soc. A 219, 186–203 (1953)

    Article  CAS  Google Scholar 

  78. Leaist, D.G.: Determination of ternary diffusion coefficients by the Taylor dispersion method. J. Phys. Chem. 94, 5180–5183 (1990)

    Article  CAS  Google Scholar 

  79. MacEvans, K., Leaist, D.G.: Quaternary mutual diffusion of a cationic–anionic mixed surfactant from moments analysis of Taylor dispersion profiles. Phys. Chem. Chem. Phys. 5, 3951–3958 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald G. Miller.

Additional information

The author Donald G. Miller is deceased and further correspondence will be addressed by Joseph A. Rard at e-mail address: solution_chemistry2@comcast.net.

© Accademia delle Scienze Fisiche e Matematiche - Napoli, 2007. From Rend. Acc. Sc. Fis. Mat. Napoli Vol. LXXIV (2007) pp. 192–211, ISSN:0370-3568, ISBN 978-88-207-4232-4. Reprinted by permission of Liguori Editore, Napoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D.G. The History of Interferometry for Measuring Diffusion Coefficients. J Solution Chem 43, 6–25 (2014). https://doi.org/10.1007/s10953-014-0132-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0132-0

Keywords

Navigation