Quod fluit in unam partem fluit: nemo aquam fluere dicit, si tantum intra se movetur, sed si aliquot fertur; potest ergo aliquid moveri et non fluere et e contrario non potest fluere nisi in unam partem.
(Seneca, Naturales quaestiones. V 1,4).
(What is moving to some direction does flow: nobody can say that water flows if it is moving only inside itself but only if it is running somewhere. Therefore (something) a liquid can move but not flow and can flow if it is moving to some direction).
Abstract
The history of the development and use of interferometric and other optical techniques for the measurements of diffusion coefficients in liquid mixtures is reviewed. The greatest emphasis is on Gouy and Rayleigh interferometry because they have been extensively developed to yield the most precise results.
Similar content being viewed by others
Notes
Editor’s note: the 45 and 35 years ago refer to when this lecture was presented in 1999.
Editor’s note: Section 2 refers to a section of the initial publication of this history, as described at the bottom of the first page of this article, which is not included here.
References
Tyrrell, H.J.V., Harris, K.R.: Diffusion in Liquids. Butterworths, London (1984)
Svensson, H., Thompson, T.E.: Translational diffusion methods in protein chemistry. In: Alexander, R., Block, R.J. (eds.) A Laboratory Manual of Analytical Methods in Protein Chemistry, vol. 3, chap. 3, pp. 57–118. Pergamon, New York (1961)
Dunlop, P.J., Steel, B.J., Lane, J.E.: Experimental methods for studying diffusion in liquids, gases, and solids. In: Weissberger, A., Rossiter, B.W. (eds.) Physical Methods of Chemistry, vol. 1, part IV, chap. IV, pp. 205–349. Wiley, New York (1972)
Miller, D.G., Albright, J.G.: Optical methods. Section 9.1.6 of chap. 9, Diffusion. In: Wakeham, W.A., Nagashima, A., Sengers, J.V. (eds.) Measurement of the Transport Properties of Fluids: Experimental Thermodynamics, vol. III, pp. 272–294 (references pp. 316–319). Blackwell Scientific Publications, Oxford (1991)
Fujita, H., Gosting, L.J.: An exact solution of the equations for free diffusion in three-component systems with interacting flows, and its use in evaluation of the diffusion coefficients. J. Am. Chem. Soc. 78, 1099–1106 (1956)
Fujita, H., Gosting, L.J.: A new procedure for calculating the four diffusion coefficients of three-component systems from Gouy diffusiometer data. J. Phys. Chem. 64, 1256–1263 (1960)
Eppstein L.B., Miller D.G.: Unpublished ternary D ij for NaCl–MgCl2–H2O (1973)
Miller, D.G., Ting, A.W., Rard, J.A., Eppstein, L.B.: Ternary diffusion coefficients of the brine systems NaCl(0.5 M)–Na2SO4(0.5 M)–H2O and NaCl(0.489 M)–MgCl2(0.051 M)–H2O (seawater composition) at 25 °C. Geochim. Cosmochim. Acta 50, 2397–2403 (1986)
Kim, H.: Procedures for isothermal diffusion studies of four-component systems. J. Phys. Chem. 70, 562–575 (1966)
Kim, H.: Combined use of various experimental techniques for the determination of nine diffusion coefficients in four-component systems. J. Phys. Chem. 73, 1716–1722 (1969)
Miller, D.G.: Unpublished method for extraction of 9 D ij for 4-component systems (1973)
Miller, D.G.: A method for obtaining multicomponent diffusion coefficients directly from Rayleigh and Gouy fringe positions. J. Phys. Chem. 92, 4222–4226 (1988)
Gouy, G.: Sur de nouvelles franges d’interférence. C. R. Seances Soc. 90, 307–309 (1880)
Thovert, M.J.: Recherches sur la diffusion: Généralités sur les observations optiques. Ann. Chim. Phys. 26, 366–432 (1902)
Vitagliano, V.: Misure dei coefficienti differenziali di diffusione nelle soluzioni acquose di LiCl a 0–18–25–35–50 °C. Gazz. Chim. Ital. 90, 876–893 (1960)
Tiselius, A., Pedersen, K.O., Erikson-Quesnel, I.-B.: Observation of ultracentrifugal sedimentation by Toepler “Schlieren” method. Nature (London) 139, 546 (1937)
Thovert, M.J.: Recherches sur la diffusion des solutions. Ann. Phys. 2, 369–427 (1914)
Philpot, J.St.L.: Direct photography of ultracentrifuge sedimentation curves. Nature (London) 141, 283–285 (1938)
Svensson, H.: Direkte photographische aufnahme von electrophoresediagrammen. Kolloid-Z. 87, 181–186 (1939)
Svensson, H.: Theorie der Beobachtungsmethode der gekreuzten Spalte. Kolloid-Z. 90, 141–156 (1940)
Coulson, C.A., Cox, J.T., Ogston, A.G., Philpot, J.St.L.: A rapid method for determining diffusion constants in solution. Proc. R Soc. (London) 192A, 382–402 (1948)
Ogston, A.G.: The Gouy diffusiometer; further calibration. Proc. R Soc. (London) 196A, 272–285 (1949)
Longsworth, L.G.: The diffusion of macromolecules and electrolytes in solution: a historical survey. Ann. N. Y. Acad. Sci. 46, 211–246 (1945)
Longsworth, L.G.: Experimental; tests of an interference method for the study of diffusion. J. Am. Chem. Soc. 69, 2510–2516 (1947)
Kegeles, G., Gosting, L.J.: The theory of an interference method for the study of diffusion. J. Am. Chem. Soc. 69, 2516–2523 (1947)
Gosting, L.J., Hanson, E.M., Kegeles, G., Morris, M.S.: Equipment and experimental methods for interference diffusion studies. Rev. Sci. Instrum. 20, 209–215 (1949)
Gosting, L.J., Morris, M.S.: Diffusion studies on dilute aqueous sucrose solutions at 1 and 25° with the Gouy interference method. J. Am. Chem. Soc. 71, 1998–2006 (1949)
Gosting, L.J.: A study of the diffusion of potassium chloride in water at 25° with the Gouy interference method. J. Am. Chem. Soc. 72, 4418–4422 (1950)
Onsager, L.: Theories and problems of liquid diffusion. Ann. N. Y. Acad. Sci. 46, 241–266 (1945)
Gosting, L.J., Onsager, L.: A general theory for the Gouy diffusion method. J. Am. Chem. Soc. 74, 6066–6074 (1952)
Dunlop, P.J., Gosting, L.J.: Interacting flows in liquid diffusion: expressions for the solute concentration curves in free diffusion and their use in interpreting Gouy diffusiometer data for aqueous three-component systems. J. Am. Chem. Soc. 77, 5238–5249 (1955)
Miller, D.G.: The validity of Onsager’s reciprocal relations in ternary diffusion. J. Phys. Chem. 62, 767 (1958)
Miller, D.G.: Ternary isothermal diffusion and the validity of the Onsager reciprocity relations. J. Phys. Chem. 63, 570–578 (1959)
Dunlop, P.J., Gosting, L.J.: Use of diffusion and thermodynamic data to test the Onsager reciprocal relation for isothermal diffusion in the system NaCl–KCl–H2O at 25°. J. Phys. Chem. 63, 86–93 (1959)
Miller, D.G.: Thermodynamics of irreversible processes. The experimental verification of the Onsager reciprocal relations. Chem. Rev. 60, 15–37 (1960)
Gosting, L.J., Kim, H., Loewenstein, M.A., Reinfelds, G., Revzin, A.: A versatile optical diffusiometer including a large optical bench of new design. Rev. Sci. Instrum. 44, 1602–1609 (1973)
Riley, J.F., Lyons, P.A.: Intensity measurements applied to Gouy diffusiometry. J. Am. Chem. Soc. 77, 261–264 (1955)
Renner, T.A., Lyons, P.A.: Computer-recorded Gouy interferometric diffusion and the Onsager–Gosting theory. J. Phys. Chem. 78, 2050–2054 (1974)
Vitagliano, V.: Introduzione allo Studio della Diffusione nei Liquidi. G D’Agostino, Napoli (1959)
Calvet, E.: Nouvelle méthode d’étude de la diffusion dans les liquides. Mesure des coefficients de diffusion. C. R. Seances Soc. 220, 597–599 (1945)
Calvet, E.: Diffusion dans les liquides. Obtention directe du réseau des courbes f(x, t, c) = 0. C. R. Seances Soc. 221, 403–405 (1945)
Calvet, E., Chevalerias, R.: A new interferometric method for the study of diffusion in liquids. J. Chim. Phys. 43, 37–53 (1946)
Svennson, H.: On the use of Rayleigh–Philpot–Cook interference fringes for the measurement of diffusion coefficients. Acta Chim. Scand. 5, 72–84 (1951)
Philpot, J.St.L., Cook, G.H.: A self-plotting interferometric optical system for the ultracentrifuge. Research 1, 234–236 (1948)
Svensson, H.: An optical arrangement for getting simultaneous records of the refractive index and its derivative for stratified solutions. Acta Chim. Scand. 4, 399–403 (1950)
Svensson, H.: The second-order aberrations in the interferometric measurement of concentration gradients. Opt. Acta 1, 25–32 (1954)
Svensson, H.: The third-order aberrations in the interferometric measurement of concentration gradients. Opt. Acta 3, 164–183 (1956)
Longsworth, L.G.: Interferometry in electrophoresis. Anal. Chem. 23, 346–348 (1951)
Gosting, L.J., Fujita, H.: Interpretation of data for concentration-dependent free diffusion in two-component systems. J. Am. Chem. Soc. 79, 1359–1366 (1955)
Creeth, J.M.: Studies of free diffusion in liquids with the Rayleigh method. I. The determination of differential diffusion coefficients in concentration-dependent systems of two components. J. Am. Chem. Soc. 77, 6428–6440 (1955)
Creeth, J.M., Gosting, L.J.: Studies of free diffusion in liquids with the Rayleigh method. II. An analysis for systems containing two solutes. J. Phys. Chem. 62, 58–65 (1958)
Sundelöf, L.-O.: Determination of distributions of molecular size parameters by a convolution procedure. Ark. Kemi 25(1), 1–65 (1965)
Albright, J.G., Miller, D.G.: Mutual diffusion coefficients at 25° in the system silver nitrate–water. J. Phys. Chem. 76, 1853–1857 (1972)
Miller, D.G.: Series expansion methods for extracting ternary diffusion coefficients from Rayleigh interferometric data. J. Solution Chem. 10, 831–846 (1981)
Miller, D.G., Albright, J.G., Mathew, R., Lee, C.M., Rard, J.A., Eppstein, L.B.: Isothermal diffusion coefficients of NaCl–MgCl2–H2O at 25°C. 5. Solute concentration ratio of 1:1 and some Rayleigh results. J. Phys. Chem. 97, 3885–3899 (1993)
Albright, J.G., Miller, D.G.: Analysis of free diffusion in a binary system when the diffusion coefficient is a function of the square root of concentration. J. Phys. Chem. 79, 2061–2068 (1975)
Albright, J.G., Miller, D.G.: Analysis of Gouy interference patterns from binary free-diffusion systems when the diffusion coefficient and refractive index have C 1/2 and C 3/2 terms, respectively. J. Phys. Chem. 84, 1400–1413 (1980)
Miller, D.G., Paduano, L., Sartorio, R., Albright, J.G.: Analysis of Gouy fringe data and comparison of Rayleigh and Gouy optical diffusion measurements using the system raffinose(0.015 M)–KCl(0.5 M)–H2O at 25°C. J. Phys. Chem. 98, 13745–13754 (1994)
Miller, D.G., Sartorio, R., Paduano, L., Rard, J.A., Albright, J.G.: Effects of different sized concentration differences across free diffusion boundaries and comparison of Gouy and Rayleigh diffusion measurements using NaCl–KCl–H2O. J. Solution Chem. 25, 1185–1211 (1996)
Albright, J.G., Miller, D.G.: Nonlinear regression programs for the analysis of Gouy fringe patterns from isothermal free diffusion experiments on three-component systems. J. Phys. Chem. 93, 2169–2175 (1989)
Ambrosone, L., Vitagliano, V., Della Volpe, C., Sartorio, R.: Non ideality in free diffusion boundaries. J. Solution Chem. 20, 271–291 (1991)
Miller, D.G., Rard, J.A., Eppstein, L.B., Albright, J.G.: Mutual diffusion coefficients and ionic transport coefficients l ij of MgCl2–H2O at 25°C. J. Phys. Chem. 88, 5739–5748 (1984)
Rard, J.A., Albright, J.G., Miller, D.G., Zeidler, M.E.: Ternary mutual diffusion coefficients and densities of the system {z1NaCl + (1 − z1)Na2SO4}(aq) at 298.15 K and a total molarity of 0.5000 mol dm−3. J. Chem. Soc. Faraday Trans. 92, 4187–4197 (1996)
Albright, J.G., Annunziata, O., Miller, D.G., Paduano, L., Pearlstein, A.J.: Precision measurements of binary and multicomponent diffusion coefficients in protein solutions relevant to crystal growth: lysozyme chloride in water and aqueous NaCl at pH 4.5 and 25 °C. J. Am. Chem. Soc. 121, 3256–3266 (1999)
Annunziata, O., Paduano, L., Pearlstein, A.J., Miller, D.G., Albright, J.G.: Extraction of thermodynamic data from ternary diffusion coefficients. Use of precision diffusion measurements for aqueous lysozyme chloride–NaCl at 25 °C to determine the change of lysozyme chloride chemical potential with increasing NaCl concentration well into the supersaturated region. J. Am. Chem. Soc. 122, 5916–5928 (2000)
Paduano, L., Annunziata, O., Pearlstein, A.J., Miller, D.G., Albright, J.G.: Precision measurement of ternary diffusion coefficients and implications for protein crystal growth: lysozyme chloride in aqueous ammonium chloride at 25 °C. J. Crystal Growth 232, 273–284 (2001)
Annunziata, O., Paduano, L., Pearlstein, A.J., Miller, D.G., Albright, J.G.: The effect of salt on protein chemical potential determined by ternary diffusion in aqueous solutions. J. Phys. Chem. B 110, 1405–1415 (2006)
Annunziata, O., Buzatu, D., Albright, J.G.: Protein diffusion coefficients determined by macroscopic-gradient Rayleigh interferometry and dynamic light scattering. Langmuir 21, 12085–12089 (2005)
Paduano, L., Sartorio, R., Vitagliano, V., Albright, J.G., Miller, D.G.: Measurement of the mutual diffusion coefficients at one composition of the four-component system α-cyclodextrin–l-phenylalanine–monobutylurea–H2O at 25 °C. J. Phys. Chem. 96, 7478–7483 (1992)
Annunziata, O., Vergara, A., Paduano, L., Sartorio, R., Miller, D.G., Albright, J.G.: Precision of interferometric diffusion coefficients in a 4-component system relevant to protein crystal growth: lysozyme–tetra(ethylene glycol)–NaCl–H2O. J. Phys. Chem. B 107, 6590–6597 (2003)
Miller, D.G.: Equal eigenvalues in multicomponent diffusion: the extraction of diffusion coefficients from experimental data in ternary systems. In: Purdy, G.R. (ed.) Fundamentals and Applications of Ternary Diffusion. Proceedings of the International Symposium, 29th Annual Conference of Metallurgists of CIM (Hamilton, Ontario, August 27–28), pp. 29–40. Pergamon Press, New York (1990)
Miller, D.G., Vitagliano, V., Sartorio, R.: Some comments on multicomponent diffusion: negative main term diffusion coefficients, second law constraints, and reference frame transformations. J. Phys. Chem. 90, 1509–1519 (1986)
Miller, D.G.: A liquid state least-squares procedure for obtaining solid state multicomponent diffusion coefficients from diffusion couples. Acta Mater. 48, 5993–5999 (1998)
Longsworth, L.G.: The diffusion of hydrogen bonding solutes in carbon tetrachloride. J. Colloid Interface Sci. 22, 3–11 (1966)
McDougall, T.J.: Double-diffusive convection caused by coupled molecular diffusion. J. Fluid Mech. 126, 379–397 (1983)
Miller, D.G., Vitagliano, V.: Experimental tests of McDougall’s theory for the onset of convective instabilities in isothermal ternary systems. J. Phys. Chem. 90, 1706–1717 (1986)
Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R Soc. A 219, 186–203 (1953)
Leaist, D.G.: Determination of ternary diffusion coefficients by the Taylor dispersion method. J. Phys. Chem. 94, 5180–5183 (1990)
MacEvans, K., Leaist, D.G.: Quaternary mutual diffusion of a cationic–anionic mixed surfactant from moments analysis of Taylor dispersion profiles. Phys. Chem. Chem. Phys. 5, 3951–3958 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
The author Donald G. Miller is deceased and further correspondence will be addressed by Joseph A. Rard at e-mail address: solution_chemistry2@comcast.net.
© Accademia delle Scienze Fisiche e Matematiche - Napoli, 2007. From Rend. Acc. Sc. Fis. Mat. Napoli Vol. LXXIV (2007) pp. 192–211, ISSN:0370-3568, ISBN 978-88-207-4232-4. Reprinted by permission of Liguori Editore, Napoli.
Rights and permissions
About this article
Cite this article
Miller, D.G. The History of Interferometry for Measuring Diffusion Coefficients. J Solution Chem 43, 6–25 (2014). https://doi.org/10.1007/s10953-014-0132-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-014-0132-0