Skip to main content
Log in

Trace Amounts of Aqueous Copper(II) Chloride Complexes in Hypersaline Solutions: Spectrophotometric and Thermodynamic Studies

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Knowledge of the thermodynamic properties of aqueous copper(II) chloride complexes is important for understanding and quantitatively modeling trace copper behavior in hydrometallurgical extraction processing. In this paper, UV–Vis spectra data of Cu(II) chloride solutions with various salinities (NaCl, 0–5.57 mol·kg−1) are collected at 25 °C. The concentration distribution of Cu–Cl species is in good agreement with those calculated by a reaction model (RM). The simple hydrated ion, Cu2+, is dominant at low concentration, whereas [CuCl]+, [CuCl2]0 and [CuCl3] become increasingly important as the chloride concentration rises. Moreover, the RM calculation suggests the present of a small amount of [CuCl4]2−. The de-convoluted molar spectrum of each species is in excellent agreement with our previous theoretical results predicted by time-dependent density functional theory treatment of aqueous Cu-containing systems. The formation constants for these copper chloride complexes have been reported and are to be preferred, except log10 K 2 ([CuCl2]0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brugger, J., McPhail, D.C., Black, J., Spiccia, L.: Complexation of metal ions in brines: application of electronic spectroscopy in the study of the Cu(II)–LiCl–H2O system between 25 and 90 °C. Geochim. Cosmochim. Acta 65, 2691–2708 (2001)

    Article  CAS  Google Scholar 

  2. Gunton, C.: The role of salinity on the formation of geochemical anomalies in the regolith. In: Roach, I.C. (ed.) Advances in Regolith: Proceedings of the CRC LEME Regional Regolith Symposia, pp. 154–158, CRC LEME, West Australia (2003)

  3. Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G.T., Sjöberg, S., Wanner, H.: Chemical speciation of environmentally significant metals with inorganic ligands Part 2: The Cu2+–OH, Cl, \( {\text{CO}}_{3}^{2 - } \), \( {\text{SO}}_{4}^{2 - } \), and \( {\text{PO}}_{4}^{3 - } \) systems. Pure Appl. Chem. 79, 895–950 (2007)

  4. Wen, J.J.: The fundamental research on removing copper from cobalt electrolyte and nickel electrolyte by ion-exchange with novel silica–polyamine organic–inorganic composite resin. Dissertation, Central South University, Changsha, China (2010)

  5. Chen, X.Y., Chen, A.L., Zhao, Z.W., Liu, X.H., Shi, Y.C., Wang, D.Z.: Removal of Cu from the nickel electrolysis anolyte using nickel thiocarbonate. Hydrometallurgy 133, 106–110 (2013)

    Article  CAS  Google Scholar 

  6. Lee, C.I., Yang, W.F., Hsieh, C.I.: Removal of copper(II) by manganese-coated sand in a liquid fluidized-bed reactor. J. Hazard. Mater. 114, 45–51 (2004)

    Article  CAS  Google Scholar 

  7. Ramette, R.W.: Copper(II) chloride complex equilibrium constants. Inorg. Chem. 22, 3323–3326 (1983)

    Article  CAS  Google Scholar 

  8. Arnek, R., Puigdomenech, I., Valiente, M.: A calorimetric study of copper(II) chloride complexes in aqueous solution. Acta Chem. Scand. A 36, 15–19 (1982)

    Article  Google Scholar 

  9. Byrne, R.H., Van der Weijden, C., Kester, D.R., Zuehlke, R.W.: Evaluation of the CuCl+ stability constant and molar absorptivity in aqueous media. J. Solution Chem. 12, 581–596 (1983)

    Article  CAS  Google Scholar 

  10. Moeller, T.: An application of the method of continuous variations to complexion formation in copper(II) salt solutions containing chloride ion. J. Phys. Chem. 48, 111–119 (1944)

    Article  CAS  Google Scholar 

  11. Bjerrum, J.: Optical investigations on cupric chloride in mixtures with other chlorides. Mat.-Fys. Medd.-K. Dan Vidensk. Selsk, vol. 22, pp. 1–43 (1946)

  12. Bjerrum, J., Skibsted, L.H.: A contribution to our knowledge of weak chloro complex formation by copper(II) in aqueous chloride solutions. Acta Chem. Scand. A 31, 673–677 (1977)

    Article  CAS  Google Scholar 

  13. Bjerrum, J., Skibsted, L.H.: Weak chloro complex formation by copper(II) in aqueous chloride solutions. Inorg. Chem. 25, 2479–2481 (1986)

    Article  CAS  Google Scholar 

  14. Bjerrum, J.: Determination of small stability constants. A spectrophotometric study of copper(II) chloride complexes in hydrochloric acid. Acta Chem. Scand. A 41, 328–334 (1987)

    Article  Google Scholar 

  15. Lundstrom, M., Aromaa, J., Forsen, O., Hyvarinen, O., Barker, M.H.: Leaching of chalcopyrite in cupric chloride solution. Hydrometallurgy 77, 89–95 (2005)

    Article  Google Scholar 

  16. Hyvarinen, O., Hamalainen, M.: HydroCopper™—a new technology producing copper directly from concentrate. Hydrometallurgy 77, 61–65 (2005)

    Article  Google Scholar 

  17. Sholz, H., Ludeman, H.D., Franck, E.U.: Spetra of Cu(II)-complexes in aqueous solutions at high temperatures and pressures. Ber. Bunsenges. Phys. Chem. 76, 406–409 (1972)

    Google Scholar 

  18. Helgeson, H.C., Kirkham, D.H., Flowers, G.C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 °C and 5 kb. Am. J. Sci. 281, 1249–1516 (1981)

    Article  CAS  Google Scholar 

  19. Shriver, D.F., Atkins, P.W., Langford, H.C.: Inorganic Chemistry, 3rd edn. Oxford University Press, Oxford (1996)

    Google Scholar 

  20. Heinrich, C.A., Seward, T.M.: A spectrophotometric study of aqueous iron(II) chloride complexing from 25 to 200 °C. Geochim. Cosmochim. Acta 54, 2207–2221 (1990)

    Article  CAS  Google Scholar 

  21. Otakar, S., Petr, N.: Densities of aqueous solutions of inorganic substances. Elsevier, New York (1985)

    Google Scholar 

  22. Zhou, Q.B., Zeng, D., Voigt, W.: Thermodynamic modeling of salt–water systems up to saturation concentrations based on solute speciation: CuCl2–MCl n –H2O at 298 K (M = Li, Mg, Ca). Fluid Phase Equilib. 322–323, 30–40 (2012)

    Article  Google Scholar 

  23. Malinowski, E.R.: Determination of the number of factors and the experimental error in a data matrix. Anal. Chem. 49, 612–616 (1977)

    Article  CAS  Google Scholar 

  24. Liu, W., Brugger, J., Mcphail, D.C., Spiccia, L.: A spectrophotometric study of aqueous copper(II)–chloride complexes in LiCl solutions between 100 °C and 250 °C. Geochim. Cosmochim. Acta 66, 3615–3633 (2002)

    Article  CAS  Google Scholar 

  25. Hatfield, W.E., Bedon, H.D., Horner, S.M.: Molecular orbital theory for the pentachlorocuprate(II) ion. Inorg. Chem. 4, 1181–1184 (1965)

    Article  CAS  Google Scholar 

  26. Migdisov, A.A., Williams-Jones, A.E., Normand, C., Wood, S.A.: A spectrophotometric study of samarium(III) speciation in chloride solutions at elevated temperatures. Geochim. Cosmochim. Acta 72, 1611–1625 (2008)

    Article  CAS  Google Scholar 

  27. Suleimenov, O.M., Seward, T.M.: Spectrophotometric measurements of metal complex formation at high temperatures: the stability of Mn(II) chloride species. Chem. Geol. 167, 177–192 (2000)

    Article  CAS  Google Scholar 

  28. Uchida, H., Matsuoka, M.: Molecular dynamics simulation of solution structure and dynamics of aqueous sodium chloride solutions from dilute to supersaturated concentration. Fluid Phase Equilib. 219, 49–54 (2004)

    Article  CAS  Google Scholar 

  29. Sverjensky, D.A., Shock, E.L., Helgeson, H.C.: Prediction of the thermodynamic properties of aqueous metal complexes to 1000 C and 5 kb. Geochim. Cosmochim. Acta 61, 1359–1412 (1997)

    Article  CAS  Google Scholar 

  30. Tagirov, B.R., Zotov, A.V., Akinfiev, N.N.: Experimental study of dissociation of HCl from 350 to 500 °C and from 500 to 2500 bars: thermodynamic properties of HCl0(aq). Geochim. Cosmochim. Acta 61, 4267–4280 (1997)

    Article  CAS  Google Scholar 

  31. Migdisov, A.A., Reukov, V.V., Williams-Jones, A.E.: A spectrophotometric study of neodymium(III) complexation in sulfate solutions at elevated temperatures. Geochim. Cosmochim. Acta 70, 983–992 (2006)

    Article  CAS  Google Scholar 

  32. Anderson, G.M., Crerar, D.A.: Thermodynamics in Geochemistry: The Equilibrium Model. Oxford University Press, New York (1993)

    Google Scholar 

  33. Helgeson, H.C.: Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci. 267, 729–804 (1969)

    Article  CAS  Google Scholar 

  34. Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: II. Debye–Hückel parameters for activity coefficients and relative partial molal properties. Am. J. Sci. 174, 1199–1261 (1974)

    Article  Google Scholar 

  35. Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678 (1937)

    Article  CAS  Google Scholar 

  36. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  37. Pokrovskii, V.A., Helgeson, H.C.: Calculation of the standard partial molal thermodynamic properties of KCl0 and activity coefficients of aqueous KCl at temperatures and pressures to 1000 °C and 5 kbar. Geochim. Cosmochim. Acta 61, 2175–2183 (1997)

    Article  CAS  Google Scholar 

  38. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  Google Scholar 

  39. Dennis, J.E., Woods, D.J.: Optimization on microcomputers: The Neld–Mead simplex algorithm. In: Wouk, A. (ed.) New Computing Environments: Microcomputers in Large-Scale Computing, pp. 116–122. SIAM, Philadelphia (1987)

    Google Scholar 

  40. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14, 403–420 (1970)

    Article  Google Scholar 

  41. Hug, S.J., Sulzberger, B.: In situ Fourier transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase. Langmuir 10, 3587–3597 (1994)

    Article  CAS  Google Scholar 

  42. Boily, J.F., Seward, T.M.: Palladium(II) chloride complexation: spectrophotometric investigation in aqueous solutions from 5 to 125 °C and theoretical insight into Pd–Cl and Pd–OH2 interactions. Geochim. Cosmochim. Acta 69, 3773–3789 (2005)

    Article  CAS  Google Scholar 

  43. Boily, J.F., Suleimenov, O.M.: Extraction of chemical speciation and molar absorption coefficients with well-posed solutions of Beer’s law. J. Solution Chem. 35, 917–926 (2006)

    Article  CAS  Google Scholar 

  44. Liu, W., Etschmann, B., Brugger, J., Spiccia, L., Foran, G., Mcinnes, B.: UV–Vis spectrophotometric and XAFS studies of ferric chloride complexes in hyper-saline LiCl solutions at 25–90 °C. Chem. Geol. 231, 326–349 (2006)

    Article  CAS  Google Scholar 

  45. Xia, F.F., Yi, H.B., Zeng, D.: Hydrates of copper dichloride in aqueous solution: a density functional theory and polarized continuum model investigation. J. Phys. Chem. A 113, 14029–14038 (2009)

    Article  CAS  Google Scholar 

  46. Xia, F.F., Yi, H.B., Zeng, D.: Hydrates of Cu2+ and CuCl+ in dilute aqueous solution: a density functional theory and polarized continuum model investigation. J. Phys. Chem. A 114, 8406–8416 (2010)

    Article  CAS  Google Scholar 

  47. Yi, H.B., Xia, F.F., Zhou, Q.B., Zeng, D.: [CuCl3] and [CuCl4]2− hydrates in concentrated aqueous solution: a density functional theory and ab initio study. J. Phys. Chem. A 115, 4416–4426 (2011)

    Article  CAS  Google Scholar 

  48. Holmes, H.F., Mesmer, R.E.: Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250 °C. J. Phys. Chem. 87, 1242–1255 (1983)

    Article  CAS  Google Scholar 

  49. Yao, Y., Sun, B., Song, P.S., Zhang, Z.: Thermodynamics of aqueous electrolyte solutions isopiestic determination of osmotic and activity coefficients in LiCl–MgCl2–H2O at 25 °C. Acta Chim. Sin. 50, 839–848 (1992)

    CAS  Google Scholar 

  50. Tian, Y., Etschmann, B., Liu, W.H., Borg, S., Mei, Y., Testemale, D., O’Neill, B., Rae, N., Sherman, D., Ngothai, Y., Johannessen, B., Glover, C., Brugger, J.: Speciation of nickel(II) chloride complexes in hydrothermal fluids: in situ XAS study. Chem. Geol. 334, 345–363 (2012)

    Article  CAS  Google Scholar 

  51. Xia, F.F., Zeng, D., Yi, H., Fang, C.: Direct contact versus solvent-shared ion pairs in saturated NiCl2 aqueous solution: a DFT, CPMD, and EXAFS investigation. J. Phys. Chem. A 117, 8468–8476 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Nos. 51134007, 2077306) and the China Scholarship Council (No. 201306370118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewen Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Zhou, Q., Yin, X. et al. Trace Amounts of Aqueous Copper(II) Chloride Complexes in Hypersaline Solutions: Spectrophotometric and Thermodynamic Studies. J Solution Chem 43, 326–339 (2014). https://doi.org/10.1007/s10953-014-0129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0129-8

Keywords

Navigation