Skip to main content
Log in

Modification of the Scaled Particle Theory for Solubility of Non-Polar Gases in Water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work based on the modified scaled particle theory (SPT), the solubility of non-polar gases (He, Ar, N2, H2, O2, CO2 and CH4) in water has been studied over a wide range of temperatures. Calculations of Henry’s law constant by the SPT are related to the inherent physical properties and parameters of solvent and solute, all of which are considered temperature dependent. The temperature dependence of molar volume and hard sphere diameter of solvent and polarizability of solute have the most significant effects on the solubilities of gases in water. The average relative deviation is less than 3 %. Also, the effect of different mixing rules in the application of SPT to prediction of gas solubility has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Battino, R., Clever, H.L.: The solubility of gases in liquids. Chem. Rev. 66, 395–463 (1966)

    Article  CAS  Google Scholar 

  2. Hildebrand, J.H., Prausnitz, J.M., Scott, R.L.: Regular and Related Solutions. Van Nostrand Reinhold, New York (1970)

    Google Scholar 

  3. Safamirzaei, M., Modarress, H., Mohsen Nia, M.: Modeling the hydrogen solubility in methanol, ethanol, 1-propanol and 1-butanol. Fluid Phase Equilib. 289, 32–39 (2010)

    Article  CAS  Google Scholar 

  4. Khajeh, A., Modarress, H., Rezaee, B.: Application of adaptive neuro fuzzy inference system for solubility prediction of carbon dioxide in polymers. Expert Syst. Appl. 36, 5728–5732 (2009)

    Article  Google Scholar 

  5. Khajeh, A., Modarress, H.: Prediction of solubility of gases in polystyrene by adaptive neuro-fuzzy inference system and radial basis function neural network. Expert Syst. Appl. 37, 3070–3074 (2010)

    Article  Google Scholar 

  6. Zeng, Z.Y., Xu, Y.Y., Li, Y.W.: Calculation of solubility parameter using perturbed-chain SAFT and cubic-plus-association equations of state. Ind. Eng. Chem. Res. 47, 9663–9669 (2008)

    Article  CAS  Google Scholar 

  7. Huang, Y.L., Miroshnichenko, S., Hasse, H., Vrabec, J.: Henry’s law constant from molecular simulation: A systematic study of 95 systems. J. Thermo. Phys. 30, 1791–1810 (2009)

    CAS  Google Scholar 

  8. Eslamimanesh, A., Esmaeilzadeh, F.: Estimation of solubility parameter by the modified ER equation of state. Fluid Phase Equilib. 291, 141–150 (2010)

    Article  CAS  Google Scholar 

  9. Valle, J.M., Fuente, J., Srinivas, K., King, J.W.: Correlation for the variations with temperature of solute solubilities in high temperature water. Fluid Phase Equilib. 301, 206–216 (2011)

    Article  Google Scholar 

  10. Geng, M., Duan, Z.: Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures. Geochim. Cosmochim. Acta 74, 5631–5640 (2010)

    Article  CAS  Google Scholar 

  11. Serra, M.C., Pessoa, F.L.P., Palavra, A.M.F.: Solubility of methane in water and in a medium for the cultivation of methanotrophs bacteria. J. Chem. Thermodyn. 38, 1629–1633 (2006)

    Article  CAS  Google Scholar 

  12. Lee, A.K.K., Johnson, E.F.: Prediction of gas solubility in molten salts. Ind. Eng. Chem. Fundam. 8, 726–729 (1969)

    Article  CAS  Google Scholar 

  13. Pierotti, R.A.: The solubility of gases in liquids. J. Phys. Chem. 67, 1840–1845 (1963)

    Article  CAS  Google Scholar 

  14. Pierotti, R.A.: Aqueous solutions of nonpolar gases. J. Phys. Chem. 69, 281–288 (1965)

    Article  CAS  Google Scholar 

  15. Pierotti, R.A.: A scaled particle theory of aqueous and nonaqueous solutions. J. Chem. Rev. 76, 717–726 (1976)

    Article  CAS  Google Scholar 

  16. Reiss, H., Frisch, H.L., Lebowitz, J.L.: Statistical mechanics of rigid spheres. J. Chem. Phys. 313, 369–380 (1959)

    Article  Google Scholar 

  17. Reiss, H., Frisch, H.L., Helfand, E., Lebowitz, J.L.: Aspects of the statistical thermodynamics of real fluid. J. Chem. Phys. 32, 119–124 (1960)

    Article  CAS  Google Scholar 

  18. Reiss, H.: Scaled particle methods in the statistical thermodynamics of fluid. Adv. Chem. Phys. 9, 1–84 (1966)

    Article  Google Scholar 

  19. Reiss, H., Casberg, R.V.: Radial distribution function for hard spheres from scaled particle theory, and an improved equation of state. J. Chem. Phys. 61, 1107–1115 (1974)

    Article  CAS  Google Scholar 

  20. Speedy, R.J.: Accurate theory of the hard sphere diameter. J. Chem. Soc. 73, 714–721 (1977)

    CAS  Google Scholar 

  21. Speedy, R.J.: Cavities and free volume in hard-disk and hard-sphere system. J. Chem. Soc. 77, 329–335 (1981)

    CAS  Google Scholar 

  22. Reiss, H.: Statistical geometry in the study of fluids and porous media. J. Phys. Chem. 96, 4736–4747 (1992)

    Article  CAS  Google Scholar 

  23. Cosgrove, B., Walkley, J.: Scaled particle theory of gas solubility inclusion of the temperature dependent hard sphere term. Can. J. Chem. 60, 1896–1900 (1982)

    Article  CAS  Google Scholar 

  24. Terrado, E., Pardo, J., Urieta, J., Mainar, A.: Solubilities of nonpolar gases in dimethyl carbonate and diethyl carbonate. J. Chem. Eng. Data 50, 512–516 (2005)

    Article  CAS  Google Scholar 

  25. Alvarado, Y.J., Alvarez-Mon, M., Baricelli, J., Caldera-Luzardo, J., Cubillan, N., Ferrer Amado, G., Hassanhi, M., Marrero-Ponce, Y., Mancilla, V., Rocafull, M.A.: Solubility of thiphene, furan and pyrrole-2-carboxaldehyde phenylhydrazone derivatives in 2.82 mol·L−1 aqueous DMSO at 298.15 K, inhibition of lymphoproliferation and tubulin polymerization: A study based on the scaled particle theory. J. Solution Chem. 39, 1099–1112 (2010)

    Article  CAS  Google Scholar 

  26. Mainar, A.M., Pardo, J., Royo, F.M., Lopez, M.C., Urieta, J.S.: Solubility of nonpolar gases in 2,2, 2-trifluoroethanol at 25 °C and 101.33 kPa partial pressure of gas. J. Solution Chem. 25, 589–595 (1996)

    Article  CAS  Google Scholar 

  27. Rettich, T.R., Battino, R., Wilhelm, E.: Solubility of gases in liquids. XVI. Henry’s law coefficients for nitrogen in water at 5 to 50 °C. J. Solution Chem. 13, 335–348 (1984)

    Article  CAS  Google Scholar 

  28. Iglesia, O., Mainar, A.M., Pardo, J.I., Urieta, J.S.: Solubilities of nonpolar gases in triethylene glycol dimethyl Ether, tetraethylene glycol dimethyl ether, dimethyl carbonate, and diethyl carbonate at 298.15 K and 101.33 kPa partial pressure of gas. J. Chem. Eng. Data 48, 657–661 (2003)

    Article  Google Scholar 

  29. Chapoy, A., Mohammadi, A.H., Richon, D., Tohidi, B.: Gas solubility measurement and modeling for methane–water and methane–ethane–n-butane–water systems at low temperature conditions. Fluid Phase Equilib. 220, 113–121 (2004)

    Article  CAS  Google Scholar 

  30. Chapoy, A., Mohammadi, A.H., Tohidi, B., Richon, D.: Gas solubility measurement and modeling for the nitrogen + water system from 274.18 to 363.02 K. J. Chem. Eng. Data 49, 1110–1115 (2004)

    Article  CAS  Google Scholar 

  31. Urukova, I., Kamps, A.P.S., Maurer, G.: Solubility of CO2 in water–acetone correlation of experimental data and predictions from molecular simulation. Ind. Eng. Chem. Res. 48, 4553–4564 (2009)

    Article  CAS  Google Scholar 

  32. Hirschfelder, J.P., Curtiss, F., Bird, R.B.: Molecular Theory of Gases and Liquid. Wiley, New York (1954)

    Google Scholar 

  33. Halgren, T.A.: The representation of van der Waals interaction in molecular mechanics force fields: Potential from, combination rules, and vdW parameters. J. Am. Chem. Soc. 114, 7827–7843 (1992)

    Article  CAS  Google Scholar 

  34. Waldman, M., Halger, T.H.: New combining rules for rare gas van der Waals parameters. J. Comput. Chem. 14, 1077–1084 (1993)

    Article  CAS  Google Scholar 

  35. Al-Matar, A.: A generating equation for mixing rules and assessment of their effect on the second viral coefficient. Ph. D. thesis, New Mexico State University (2002)

  36. Graziano, G.: Solvation thermodynamics of xenon in n-alkanes, n-alcohols and water. Biophys. Chem. 105, 371–382 (2003)

    Article  CAS  Google Scholar 

  37. Wilhelm, E.: On the temperature dependence of the effective hard sphere diameter. J. Chem. Phys. 58, 3558–3560 (1973)

    Article  CAS  Google Scholar 

  38. Graziano, G., Lee, B.: Entropy convergence in hydrophobic hydration a scaled particle theory analysis. Biophys. Chem. 105, 241–250 (2003)

    Article  CAS  Google Scholar 

  39. Schulze, G., Prausnitz, J.M.: Solubilities of gases in water at high temperatures. Ind. Eng. Chem. Fundam. 20, 175–177 (1981)

    Article  CAS  Google Scholar 

  40. Hohm, U., Kerl, K.: Temperature dependence of mean molecular polarizability of gas molecules. Mol. Phys. 58, 541–550 (1986)

    Article  CAS  Google Scholar 

  41. Perry, R.H., Green, D.W.: Chemical Engineering Handbook. McGraw-Hill (1999)

  42. Mayer, S.W.: Dependence of surface tension on temperature. J. Chem. Phys. 38, 1803–1809 (1963)

    Article  CAS  Google Scholar 

  43. Mayer, S.W.: A molecular parameter relationship between surface tension and liquid compressibility. J. Phys. Chem. 67, 2160–2164 (1963)

    Article  CAS  Google Scholar 

  44. Barker, J.A., Henderson, D.: Perturbation theory and equation of state for fluids II. A successful theory of liquids. J. Chem. Phys. 47, 4714–4722 (1967)

    Article  CAS  Google Scholar 

  45. Bell, R.P.: Polarisibility and internuclear distance. Trans. Faraday Soc. 38, 422–429 (1942)

    Article  CAS  Google Scholar 

  46. Wilhelm, E., Battino, R., Wilcock, R.J.: Low-pressure solubility of gases in liquid water. J. Chem. Rev. 77, 219–262 (1977)

    Article  CAS  Google Scholar 

  47. Pray, H.A., Schweickert, C.E., Minnich, B.H.: Solubility of hydrogen, nitrogen and helium in water at elevated temperatures. Ind. Eng. Chem. 44, 1146–1152 (1952)

    Article  CAS  Google Scholar 

  48. Benson, B., Krause, D.: Empirical laws for dilute aqueous solutions of nonpolar gases. J. Chem. Phys. 64, 689–710 (1976)

    Article  CAS  Google Scholar 

  49. Potter, R.W., Clynne, M.A.: The solubility of the noble gases. He, Ne, Ar, Kr, and Xe in water up to the critical point. J. Solution Chem. 7, 837–844 (1978)

    Article  CAS  Google Scholar 

  50. Cramer, S.D.: The solubility of oxygen in brines from 0 to 300 °C. Ind. Eng. Chem. Proc. Des. Dev. 19, 300–305 (1980)

    Article  CAS  Google Scholar 

  51. Edwards, T.J., Maurer, G., Newman, J., Prausnitz, J.M.: Vapor–liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. J. AICHE. 24, 966–976 (1978)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mani Safamirzaei (PhD student in Amirkabir University of Technology, Tehran, Iran) for his help in this manuscript, and the referees for important observations and very helpful comments on the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Modarress.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbari, A., Modarress, H. Modification of the Scaled Particle Theory for Solubility of Non-Polar Gases in Water. J Solution Chem 42, 615–633 (2013). https://doi.org/10.1007/s10953-013-9980-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-9980-2

Keywords

Navigation