Skip to main content
Log in

1:1 and 1:2 Inclusion Complexes of Di-tert-butyl l-tartrate with α-Cyclodextrin: A Diffusion Study

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The diffusion properties at two overall compositions of a ternary aqueous system containing α-cyclodextrin and a double-functional guest molecule, namely di-tert-butyl l-tartrate, have been studied by means of the Gouy interferometry. The experimental data are interpreted in terms of two independent chemical equilibria involving inclusion compounds. The elements of the diffusion coefficient matrix have been expressed as functions of the two equilibrium constants as well as of the diffusivities of the actual species occurring in solution. The reliability of the diffusion coefficients obtained through the Fujita–Gosting–Revzin procedure is also discussed in terms of its dependence on the composition of solutions used in the Gouy experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  2. Li, S., Purdy, W.C.: Cyclodextrins and their applications in analytical-chemistry. Chem. Rev. 92, 1457–1470 (1992)

    Article  CAS  Google Scholar 

  3. Duchene, D. (ed.): Cyclodextrins and Their Industrial Uses. Éditions de Santé, Paris (1987)

    Google Scholar 

  4. Duchene, D. (ed.): New Trends in Cyclodextrins and Derivatives. Éditions de Santé, Paris (1991)

  5. Szejtli, J.: Cyclodextrins and Their Inclusion Complexes. Verlag der Ungarischen Akademie der Wissenschaften. Akadémiai Kiadó, Budapest (1982)

    Google Scholar 

  6. Szejtli, J., Osa, T. (volume eds.): Comprehensive Supramolecular Chemistry, Vol. 3: Cyclodextrins. Pergamon Press, Oxford (1996)

  7. Auletta, T., De Jong, M.R., Mulder, A., Van Veggel, F.C.J.M., Huskens, J., Reinhoudt, D.N., Zou, S., Zapotoczny, S., Schoenherr, H., Vancso, G.J., Kuipers, L.: β-Cyclodextrin host–guest complexes probed under thermodynamic equilibrium: thermodynamics and AFM force spectroscopy. J. Am. Chem. Soc. 126, 1577–1584 (2004)

    Article  CAS  Google Scholar 

  8. Baer, A.J., Macartney, D.H.: α- and β-Cyclodextrin rotaxanes of μ-bis(4-pyridyl)bis[pentacyanoferrate(II)] complexes. Inorg. Chem. 39, 1410–1417 (2000)

    Article  CAS  Google Scholar 

  9. Catena, G.C., Bright, F.V.: Thermodynamic study on the effects of β-cyclodextrin inclusion with anilinonaphthalenesulfonates. Anal. Chem. 61, 905–909 (1989)

    Article  CAS  Google Scholar 

  10. Clarke, R.J., Coates, J.H., Lincoln, S.F.: Inclusion complexes of the cyclomaltooligosaccharides (cyclodextrins). Adv. Carbohydr. Chem. Biochem. 46, 205–249 (1988)

    Article  CAS  Google Scholar 

  11. Eftink, M.R., Andy, M.L., Bystrom, K., Perlmutter, H.D., Kristol, D.S.: Cyclodextrin inclusion complexes: studies of the variation in the size of alicyclic guests. J. Am. Chem. Soc. 111, 6765–6772 (1989)

    Article  CAS  Google Scholar 

  12. Godinez, L.A., Schwartz, L., Criss, C.M., Kaifer, A.E.: Thermodynamic studies on the cyclodextrin complexation of aromatic and aliphatic guests in water and water–urea mixtures. Experimental evidence for the interaction of urea with arene surfaces. J. Phys. Chem. B 101, 3376–3380 (1997)

    Article  CAS  Google Scholar 

  13. Herrmann, W., Keller, B., Wenz, G.: Kinetics and thermodynamics of the inclusion of ionene-6,10 in α-cyclodextrin in an aqueous solution. Macromolecules 30, 4966–4972 (1997)

    Article  CAS  Google Scholar 

  14. Inoue, Y., Hakushi, T., Liu, Y., Tong, L., Shen, B., Jin, D.: Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with α-, β-, and γ-cyclodextrins: enthalpy–entropy compensation. J. Am. Chem. Soc. 115, 475–481 (1993)

    Article  CAS  Google Scholar 

  15. Inoue, Y., Liu, Y., Tong, L.H., Shen, B.J., Jin, D.S.: Calorimetric titration of inclusion complexation with modified β-cyclodextrins. Enthalpy–entropy compensation in host–guest complexation: from ionophore to cyclodextrin and cyclophane. J. Am. Chem. Soc. 115, 10637–10644 (1993)

    Article  CAS  Google Scholar 

  16. Madrid, J.M., Mendicuti, F., Mattice, W.L.: Inclusion complexes of 2-methylnaphthoate and γ-cyclodextrin: experimental thermodynamics and molecular mechanics calculations. J. Phys. Chem. B 102, 2037–2044 (1998)

    Article  CAS  Google Scholar 

  17. Mark, A.E., van Helden, S.P., Smith, P.E., Janssen, L.H.M., van Gunsteren, W.F.: Convergence properties of free energy calculations: α-cyclodextrin complexes as a case study. J. Am. Chem. Soc. 116, 6293–6302 (1994)

    Article  CAS  Google Scholar 

  18. Rekharsky, M., Inoue, Y.: 1:1 and 1:2 complexation thermodynamics of γ-cyclodextrin with N-carbobenzyloxy aromatic amino acids and ω-phenylalkanoic acids. J. Am. Chem. Soc. 122, 10949–10955 (2000)

    Article  CAS  Google Scholar 

  19. Rekharsky, M.V., Goldberg, R.N., Schwarz, F.P., Tewari, Y.B., Ross, P.D., Yamashoji, Y., Inoue, Y.: Thermodynamic and nuclear magnetic resonance study of the interactions of α- and β-cyclodextrin with model substances: phenethylamine, ephedrines, and related substances. J. Am. Chem. Soc. 117, 8830–8840 (1995)

    Article  CAS  Google Scholar 

  20. Tabushi, I., Kiyosuke, Y., Sugimoto, T., Yamamura, K.: Approach to the aspects of driving force of inclusion by α-cyclodextrin. J. Am. Chem. Soc. 100, 916–919 (1978)

    Article  CAS  Google Scholar 

  21. Paduano, L., Sartorio, R., Vitagliano, V.: Diffusion coefficients of the ternary system α-cyclodextrin–sodium benzenesulfonate–water at 25°C: the effect of chemical equilibrium and complex formation on the diffusion coefficients of a ternary system. J. Phys. Chem. B 102, 5023–5028 (1998)

    Article  CAS  Google Scholar 

  22. Paduano, L., Sartorio, R., Vitagliano, V., Albright, J.G., Miller, D.G.: Measurement of the mutual diffusion-coefficients at one composition of the 4-component system α-cyclodextrin–l-phenylalanine–monobutylurea–H2O at 25°C. J. Phys. Chem. 96, 7478–7483 (1992)

    Article  CAS  Google Scholar 

  23. Paduano, L., Sartorio, R., Vitagliano, V., Albright, J.G., Miller, D.G., Mitchell, J.: Diffusion-coefficients in systems with inclusion-compounds. 1. α-cyclodextrin–l-phenylalanine–water at 25°C. J. Phys. Chem. 94, 6885–6888 (1990)

    Article  CAS  Google Scholar 

  24. Paduano, L., Sartorio, R., Vitagliano, V., Castronuovo, G.: Calorimetric and diffusional behavior of the system α-cyclodextrin–l-phenylalanine in aqueous-solution. Thermochim. Acta 162, 155–161 (1990)

    Article  CAS  Google Scholar 

  25. Paduano, L., Sartorio, R., Vitagliano, V., Costantino, L.: Diffusion-coefficients in systems with inclusion-compounds. 2. α-Cyclodextrin–(dl)norleucine–water at 25°C. Ber. Bunsenges Phys. Chem. Chem. Phys. 94, 741–745 (1990)

    Article  CAS  Google Scholar 

  26. Paduano, L., Sartorio, R., Vitagliano, V., Costantino, L.: Diffusion coefficients of the system α-cyclodextrin–n-butylurea–water at 25°C. J. Solution Chem. 24, 1143–1153 (1995)

    Article  CAS  Google Scholar 

  27. Ribeiro, A.C.F., Leaist, D.G., Esteso, M.A., Lobo, V.M.M., Valente, A.J.M., Santos, C.I.A.V., Cabral, A.M.T.D.P.V., Veiga, F.J.B.: Binary mutual diffusion coefficients of aqueous solutions of β-cyclodextrin at temperatures from 298.15 to 312.15 K. J. Chem. Eng. Data 51, 1368–1371 (2006)

    Article  CAS  Google Scholar 

  28. Ribeiro, A.C.F., Lobo, V.M.M., Azevedo, E.F.G., Miguel, MdG, Burrows, H.D.: Diffusion coefficients of sodium dodecylsulfate in aqueous solutions and in aqueous solutions of β-cyclodextrin. J. Mol. Liq. 102, 285–292 (2003)

    Article  CAS  Google Scholar 

  29. Ribeiro, A.C.F., Santos, C.I.A.V., Lobo, V.M.M., Cabral, A.M.T.D.P.V., Veiga, F.J.B., Esteso, M.A.: Diffusion coefficients of the ternary system β-cyclodextrin + caffeine + water at 298.15 K. J. Chem. Eng. Data 54, 115–117 (2009)

    Article  CAS  Google Scholar 

  30. Ribeiro, A.C.F., Santos, C.I.A.V., Valente, A.J.M., Ascenso, O.S., Lobo, V.M.M., Burrows, H.D., Cabral, A.M.T.D.P.V., Veiga, F.J.B., Teijeiro, C., Esteso, M.A.: Some transport properties of γ-cyclodextrin aqueous solutions at (298.15 and 310.15) K. J. Chem. Eng. Data 53, 755–759 (2008)

    Article  CAS  Google Scholar 

  31. Ribeiro, A.C.F., Valente, A.J.M., Santos, C.I.A.V., Prazeres, P.M.R.A., Lobo, V.M.M., Burrows, H.D., Esteso, M.A., Cabral, A.M.T.D.P.V., Veiga, F.J.B.: Binary mutual diffusion coefficients of aqueous solutions of α-cyclodextrin, 2-hydroxypropyl-α-cyclodextrin, and 2-hydroxypropyl-β-cyclodextrin at temperatures from (298.15 to 312.15) K. J. Chem. Eng. Data 52, 586–590 (2007)

    Article  CAS  Google Scholar 

  32. Santos, C.I.A.V., Esteso, M.A., Sartorio, R., Ortona, O., Sobral, A.J.N., Arranja, C.T., Lobo, V.M.M., Ribeiro, A.C.F.: A comparison between the diffusion properties of theophylline/β-cyclodextrin and theophylline/2-hydroxypropyl–β-cyclodextrin in aqueous systems. J. Chem. Eng. Data 57, 1881–1886 (2012)

    Article  CAS  Google Scholar 

  33. Huang, L., Allen, E., Tonelli, A.E.: Study of the inclusion compounds formed between α-cyclodextrin and high molecular weight poly(ethylene oxide) and poly(ε-caprolactone). Polymer 39, 4857–4865 (1998)

    Article  CAS  Google Scholar 

  34. Weickenmeier, M., Wenz, G., Huff, J.: Association thickener by host guest interaction of a β-cyclodextrin polymer and a polymer with hydrophobic side-groups. Macromol. Rapid Commun. 18, 1117–1123 (1997)

    Article  CAS  Google Scholar 

  35. Gref, R., Amiel, C., Molinard, K., Daoud-Mahammed, S., Sebille, B., Gillet, B., Beloeil, J.C., Ringard, C., Rosilio, V., Poupaert, J., Couvreur, P.: New self-assembled nanogels based on host–guest interactions: characterization and drug loading. J. Control. Release 111, 316–324 (2006)

    Article  CAS  Google Scholar 

  36. Paduano, L., Vergara, A., Corradino, M.R., Vitagliano, V., Sartorio, R.: Equilibrium properties of the system (dibutyl l-tartrate)–(α-cyclodextrin)–(water) at 25 °C. A 1H NMR and UV study. Phys. Chem. Chem. Phys. 1, 3627–3631 (1999)

    Article  CAS  Google Scholar 

  37. Mangiapia, G., Paduano, L., Ortona, O., Sartorio, R., D’Errico, G.: Analysis of main- and cross-term diffusion coefficients in bile salt mixtures. J. Phys. Chem. B 117, 741–749 (2013)

    Article  CAS  Google Scholar 

  38. Mangiapia, G., Paduano, L., Vergara, A., Sartorio, R.: Novel method for calculating the diffusion coefficients of a ternary system containing a polydisperse component. Applications to the Gouy interferometry. J. Phys. Chem. B 107, 7216–7224 (2003)

    Article  CAS  Google Scholar 

  39. Dunlop, P.J., Gosting, L.J.: Expressions for the solute concentration curves in free diffusion, and their use in interpreting Gouy diffusiometer data for aqueous three-component systems. J. Am. Chem. Soc. 77, 5238–5249 (1955)

    Article  CAS  Google Scholar 

  40. Toor, I.H.L.: Solution of the linearized equations of multicomponent mass transfer. II. Matrix methods. AIChE J 10, 460–465 (1964)

    Article  CAS  Google Scholar 

  41. Haase, R.: Thermodynamics of Irreversible Processes. Addison-Wesley, London (1969)

    Google Scholar 

  42. Gosting, L.J., Onsager, L.: A general theory for the Gouy diffusion method. J. Am. Chem. Soc. 74, 6066–6074 (1952)

    Article  CAS  Google Scholar 

  43. Tyrrell, H.J.V., Harris, K.R.: Diffusion in Liquids: A Theoretical and Experimental Study. Butterworths, London (1984)

    Google Scholar 

  44. Crank, J.: The Mathematics of Diffusion, 2nd edn. Clarendon Press, Oxford (1975)

    Google Scholar 

  45. Cussler, E.L.: Diffusion Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  46. Vergara, A., Paduano, L., Vitagliano, V., Sartorio, R.: Multicomponent diffusion in solutions where crystals grow. Mater. Chem. Phys. 66, 126–131 (2000)

    Article  CAS  Google Scholar 

  47. Paduano, L., Vergara, V., Vitagliano, V., Sartorio, R.: Mutual diffusion in presence of chemical equilibrium. Trends Phys. Chem. 7, 209–218 (1999)

    CAS  Google Scholar 

  48. Fujita, H., Gosting, L.J.: An exact solution of the equations for free diffusion in three-component systems with interacting flows, and its use in evaluation of the diffusion coefficients. J. Am. Chem. Soc. 78, 1099–1106 (1956)

    Article  CAS  Google Scholar 

  49. Fujita, H., Gosting, L.J.: A new procedure for calculating the four diffusion coefficients of three-component systems from Gouy diffusiometer data. J. Phys. Chem. 64, 1256–1263 (1960)

    Article  CAS  Google Scholar 

  50. Vergara, A., Paduano, L., Sartorio, R.: Multicomponent diffusion in systems containing molecules of different size. 4. Mutual diffusion in the ternary system tetra(ethylene glycol)–di(ethylene glycol)–water. J. Phys. Chem. B 105, 328–334 (2001)

    Article  CAS  Google Scholar 

  51. Carter, J.M., Phillies, G.D.J.: Second-order concentration correction to the mutual diffusion coefficient of a suspension of hard brownian spheres. J. Phys. Chem. 89, 5118–5124 (1985)

    Article  CAS  Google Scholar 

  52. Denbigh, K.: The Principles of Chemical Equilibrium. Cambridge University Press, Cambridge (1966)

    Google Scholar 

  53. Albright, J.G.: Theories for the experimental study of isothermal free diffusion in ternary liquid systems involving a chemical reaction. J. Phys. Chem. 67, 2628–2635 (1963)

    Article  CAS  Google Scholar 

  54. Leaist, D.G.: Binary diffusion of micellar electrolytes. J. Colloid Interface Sci. 111, 230–239 (1986)

    Article  CAS  Google Scholar 

  55. Paduano, L., Sartorio, R., Vitagliano, V., Costantino, L.: Diffusion properties of cyclodextrins in aqueous solution at 25°C. J. Solution Chem. 19, 31–39 (1990)

    Article  CAS  Google Scholar 

  56. Paduano, L., Sartorio, R., Vitagliano, V., Costantino, L.: Transport and thermodynamic properties of the systems (d, l)norleucine–water and (l)phenylalanine–water, at 25°C. J. Mol. Liquids 47, 193–202 (1990)

    Article  CAS  Google Scholar 

  57. Kim, H.: Diffusion studies of the systems water–succinic acid–urea and water–succinic acid at 25°. Effect of complex formation on the diffusion coefficients of the ternary system. J. Solution Chem. 3, 271–287 (1974)

    Article  CAS  Google Scholar 

  58. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (2007)

    Google Scholar 

  59. Revzin, A.: Isothermal free diffusion in liquids: calibrations of a new optical diffusiometer, new calculation procedures for ternary systems, and data for the system tetrabutylammonium bromide–water at 25°. PhD thesis, University of Wisconsin, Madison (1969)

  60. Wentworth, W.E.: Rigorous least squares adjustment: application to some nonlinear equations II. J. Chem. Educ. 42, 162–167 (1965)

    Article  CAS  Google Scholar 

  61. Wentworth, W.E.: Rigorous least squares adjustment—application to some nonlinear equations. I. J. Chem. Educ. 42, 96–103 (1965)

    Article  CAS  Google Scholar 

  62. Miller, D.G.: A method for obtaining multicomponent diffusion-coefficients directly from Rayleigh and Gouy fringe position data. J. Phys. Chem. 92, 4222–4226 (1988)

    Article  CAS  Google Scholar 

  63. Albright, J.G., Miller, D.G.: Analysis of free diffusion in a binary system when the diffusion coefficient is a function of the square root of concentration. J. Phys. Chem. 79, 2061–2068 (1975)

    Article  CAS  Google Scholar 

  64. Albright, J.G., Miller, D.G.: Analysis of Gouy interference patterns from binary free-diffusion systems when the diffusion coefficient and refractive index have C1/2 and C3/2 terms, respectively. J. Phys. Chem. 84, 1400–1413 (1980)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of us (R.S.) had the opportunity to collaborate with Donald Miller for a long period since the mid 1980s while the other one (G.M.) had the chance to meet him during his last stays in Naples after 2000. Even with different experiences and memories, both of us had the possibility to appreciate Don’s human side, his communication skills, and his high scientific personality. This little contribution is in his memory and honor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Sartorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangiapia, G., Sartorio, R. 1:1 and 1:2 Inclusion Complexes of Di-tert-butyl l-tartrate with α-Cyclodextrin: A Diffusion Study. J Solution Chem 43, 186–205 (2014). https://doi.org/10.1007/s10953-013-0124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0124-5

Keywords

Navigation