Skip to main content

Advertisement

Log in

A Computationally Efficient Approach to Applying the SAFT Equation for CO2 + H2O Phase Equilibrium Calculations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The statistical associating fluid theory equation of state (EoS) is employed in a time efficient way for the correlation and prediction of vapor–liquid equilibrium of the CO2 + H2O binary system for the temperature (10–100 °C) and pressure (1–600 bar) ranges suitable for simulation of CO2 geologic sequestration. The effective number of segments and energy parameter are correlated with the reduced temperature. Simple mixing rules are applied to obtain binary interaction parameters. Assigning a fixed H2O composition in the mixing rule makes the phase equilibrium calculations relatively fast compared to other EoS’s. The results obtained by the model used were found to be in satisfactory agreement with the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A :

Helmholtz energy (J)

d :

Hard-sphere diameter (10−10 m)

g :

Radius distribution function

k :

Boltzman-constant (J·K−1)

M :

Number of associated sites

N :

Number of molecules

N AV :

Avogadro’s number (6.02217 × 1023 mol−1)

p :

Pressure (bar)

P c :

Critical pressure (for CO2 73.83 bar, for H2O 220.55 bar)

T c :

Critical temperature (for CO2 304.2 K, for H2O 647.1 K)

T :

Absolute temperature (K)

t :

Celsius temperature (°C) (T/K) −273.15

R :

Gas constant (J·K−1·mol−1)

x :

Mole fraction in liquid phase

\( X_{i}^{A} \) :

Mole fraction of molecule i not bonded at site A

y :

Mole fraction in vapor phase

Z :

Compressibility factor

β :

1/KT

\( \frac{\varepsilon }{k} \) :

Energy parameter of dispersion (K)

\( \frac{{\varepsilon^{AB} }}{k} \) :

Energy parameter of association between sites A and B

\( \kappa^{AB} \) :

Bonding volume

\( \Delta^{AB} \) :

Association strength between sites A and B

μ :

Chemical potential

\( \rho \) :

Molar density (mol·m−3)

\( \rho_{n} \) :

Number density (m−3)

A, B, C, D, E, F :

Constants

abs:

Absolute

assoc:

Association interaction

chain:

Hard-sphere chain

disp:

Dispersion interaction

hs:

Hard sphere

obj:

Objective function

lit:

Literature value

cal:

Calculated value

References

  1. Bergman, P.D., Winter, E.M.: Disposal of carbon dioxide in aquifers in the US. Energy Conv. Manag. 36, 523–526 (1995)

    Article  CAS  Google Scholar 

  2. Holloway, S.: An overview of the underground disposal of carbon dioxide. Energy Conv. Manag. 38, 193–198 (1997)

    Article  Google Scholar 

  3. Koide, H., Takahashi, M., Tsukamoto, H.: Self-trapping mechanisms of carbon dioxide in the aquifer disposal. Energy Conv. Manag. 36, 505–508 (1995)

    Article  CAS  Google Scholar 

  4. Suto, Y., Liu, L., Yamasaki, N., Hashida, T.: Initial behavior of granite in response to injection of CO2-saturated fluid. Appl. Geochem. 22, 202–218 (2007)

    Article  CAS  Google Scholar 

  5. King, M.B., Mubarak, A., Kim, J.D., Bott, T.R.: The mutual solubilities of water with supercritical and liquid carbon dioxide. J. Supercrit. Fluids 5, 296–302 (1992)

    Article  CAS  Google Scholar 

  6. Spycher, N., Pruess, K.: CO2–H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochim. Cosmochim. Acta 67, 3015–3031 (2003)

    CAS  Google Scholar 

  7. Daridon, J.L., Lagourette, B., Saint-Guirons, H., Xans, P.: A cubic equation of state model for phase equilibrium calculation of alkane + carbon dioxide + water using a group contribution k ij . Fluid Phase Equilib. 91, 31–54 (1993)

    Article  CAS  Google Scholar 

  8. Diamond, L.W., Akinfiev, N.N.: Solubility of CO2 in water from −1.5 to 100 °C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modeling. Fluid Phase Equilib. 28, 265–290 (2003)

    Article  Google Scholar 

  9. Duan, Z., Moller, N., Weare, J.H.: Equation of state for the NaCl–H2O–CO2 system: prediction of phase equilibria and volumetric properties Geochim. Cosmochim. Acta 59, 2869–2882 (1995)

    Article  CAS  Google Scholar 

  10. Duan, Z., Sun, R.: An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 193, 257–271 (2003)

    Article  CAS  Google Scholar 

  11. Ferry, J.M., Baumgartner, L.: Thermodynamic models of molecular fluids at the elevated pressures and temperatures of crustal metamorphism. Rev. Mineral. Geochem. 17, 232–365 (1987)

    Google Scholar 

  12. Holloway, J.R.: Fugacity and activity of molecular species in supercritical fluids. In: Fraser, D.G. (ed.) Thermodynamics in Geology. D. Reidel Publishing Co., Dordrecht (1977)

    Google Scholar 

  13. Hu, J., Duan, A., Zhu, C., Chou, I.-M.: PVTx properties of the CO2–H2O and CO2–H2O–NaCl systems below 647 K: assessment of experimental data and thermodynamic models. Chem. Geol. 238, 249–267 (2007)

    Article  CAS  Google Scholar 

  14. Kerrick, D.M., Jacobs, G.K.: A modified Redlich–Kwong equation for H2O, CO2, and H2O–CO2 mixtures at elevated pressures and temperatures. Am. J. Sci. 281, 735–767 (1981)

    Article  CAS  Google Scholar 

  15. Mader, U.K.: H2O–CO2 mixtures: a review of P-V-T-X data and an assessment from a phase-equilibrium point of view. Can. Mineralog. 29, 767–790 (1991)

    CAS  Google Scholar 

  16. Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1,100 K at pressures up to 800 MPa. J. Phys Chern. Ref. Data 25, 1509–1596 (1994)

    Article  Google Scholar 

  17. Spycher, N., Pruess, K.: Mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12–100 °C and up to 600 bar. Geochim. Cosmochim. Acta 69, 3309–3320 (2005)

    CAS  Google Scholar 

  18. Spycher, N., Pruess, K.: A phase-partioining model for CO2-brine mixtures at elevated temperatures and pressures: application to CO2-enhanced geothermal systems. Transp. Porous Media 82, 173–196 (2009)

    Article  Google Scholar 

  19. Tödheide, K.: Hydrothermal solutions. Ber Buns. Phys. Chem. Geol. 86, 1005–1016 (1982)

    Google Scholar 

  20. Islam, A.W., Carlson, E.S.: Application of liquid state models for the time efficient phase equilibrium calculation of supercritical CO2 and H2O at high temperatures and pressures. J. Solution Chem. 42, 1641–1653 (2013)

    Article  CAS  Google Scholar 

  21. Chapman, W.G., Gubbins, K.E., Jackson, G., Radosz, M.: Equation of state solution model for associating fluids. Fluid Phase Equilib. 52, 31–38 (1989)

    Article  CAS  Google Scholar 

  22. Chapman, W.G., Gubbins, K.E., Jackson, G., Radosz, M.: New reference equation of state for associating liquids. Ind. Eng. Chem. Res. 29, 1709–1721 (1990)

    Article  CAS  Google Scholar 

  23. Huang, S.H., Radosz, M.: Equation of state for small, large, polydisperse, and associating molecules. Ind. Eng. Chem. Res. 29, 2284–2294 (1990)

    Article  CAS  Google Scholar 

  24. Muller, E.A., Gubbins, K.E.: An equation of state for water from a simplified intermolecular potential. Ind. Eng. Chem. Res. 34, 3662–3673 (1995)

    Article  Google Scholar 

  25. Belkadi, A., Vega, L.F.: Crossover soft-SAFT modeling of the CO2 + NO2/N2O4 mixture. In: 11th European meeting on supercritical fluids, Barcelona, 4–7 May (2008)

  26. Button, J.K., Gubbins, K.E.: SAFT prediction of vapour–liquid equilibria of mixtures containing carbon dioxide and aqueous monoethanolamine or diethanolamine. Fluid Phase Equilib. 158–160, 175–181 (1999)

    Article  Google Scholar 

  27. Wertheim, M.S.: Fluids with highly directional attractive forces. I. Statistical thermodynamics. J. Stat. Phys. 35, 19–34 (1984)

    Article  Google Scholar 

  28. Wertheim, M.S.: Fluids with highly directional attractive forces. I. Thermodynamics perturbation theory and integral equations. J. Stat. Phys. 35, 35–47 (1984)

    Article  Google Scholar 

  29. Wertheim, M.S.: Fluids with highly directional attractive forces. III. Multiple attraction sites. J. Stat. Phys. 42, 459–476 (1986)

    Article  Google Scholar 

  30. dos-Ramos, M.C., Blas, F.J., Galindos, A.: Phase equilibria, excess properties, and Henry’s constants of the water + carbon dioxide binary mixture. J. Phys. Chem. C 111, 15924–15934 (2007)

    Article  CAS  Google Scholar 

  31. Hu, Z.-Q., Yang, J.-C., Li, Y.-G.: Crossover SAFT–BACK equation of state for pure CO2 and H2O. Fluid Phase Equilib. 205, 25–36 (2003)

    Article  CAS  Google Scholar 

  32. Kislev, S.B., Ely, J.F.: HRX-SAFT equation of state for fluid mixtures: application to binary mixtures of carbon dioxide, water, and methanol. Ind. Eng. Chem. Res. 45, 3981–3990 (2006)

    Article  Google Scholar 

  33. Kontogeorgis, G.M., Tsivintzelis, I., Michelsen, M.L., Stenby, E.H.: Towards predictive association theories. Fluid Phase Equilib. 301, 244–256 (2011)

    Article  CAS  Google Scholar 

  34. Perakis, C., Voutsas, E., Magoulas, K., Tassios, D.: Thermodynamic modeling of the vapor–liquid equilibrium of the water/ethanol/CO2 system. Fluid Phase Equilib. 236, 142–150 (2006)

    Article  Google Scholar 

  35. Tsivintzelis, I., Kontogeorgis, G.M., Michelsen, M., Stenby, E.H.: Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: binary mixtures with CO2. Fluid Phase Equilib. 306, 38–56 (2011)

    Article  CAS  Google Scholar 

  36. Valtz, A., Chapoy, A., Coquelet, C., Patrice, P., Richon, D.: Vapour–liquid equilibria in the carbon dioxide–water system, measurement and modeling from 278.2 to 318.2 K. Fluid Phase Equilib. 226, 333–344 (2004)

    Article  CAS  Google Scholar 

  37. Li, X., Englezos, P.: Vapor–liquid equilibrium of systems containing alcohols using the statistical associating fluid theory equation of state. Ind. Eng. Chem. Res. 42, 4953–4961 (2003)

    Article  CAS  Google Scholar 

  38. Li, X., Englezos, P.: Vapor–liquid equilibrium of systems containing alcohols, water, carbon dioxide and hydrocarbon using SAFT. Fluid Phase Equilib. 224, 111–118 (2004)

    Article  CAS  Google Scholar 

  39. Sun, R., Dubessy, J.: Prediction of vapor–liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part I: application to H2O–CO2 system. Geochim. Cosmochim. Acta 74, 1982–1998 (2010)

    CAS  Google Scholar 

  40. Boublik, T.: Hard sphere equation of state. J. Chem. Phys. 53, 471–472 (1970)

    Article  CAS  Google Scholar 

  41. Mansoori, G.A., Carnahan, N.F., Starling, K.E., Leland, T.W.: Equilibrium thermodynamic properties of the mixtures of hard spheres. J. Chem. Phys. 54, 1523–1525 (1971)

    Article  CAS  Google Scholar 

  42. Cotterman, R.L., Schwarz, B.J., Prausnitz, J.M.: Molecular thermodynamics for fluids at low and high densities. AIChE J. 32, 1787–1798 (1986)

    Article  CAS  Google Scholar 

  43. ASME Steam Table, American Society of Mechanical Engineers. (1993)

  44. http://sequestration.mit.edu/tools/index.html. Accessed 16 Nov 2013

  45. Bamberger, A., Sieder, G., Maurer, G.: High pressure (vapor + liquid) equilibrium in binary mixtures of (carbon dioxide + water or acetic acid) at temperatures from 313 to 353 K. J. Supercrit. Fluids 17, 97–100 (2000)

    Article  CAS  Google Scholar 

  46. Briones, J.A., Mullins, J.C., Thies, M.C.: Ternary phase equilibria for acetic acid–water mixtures with super critical carbon dioxide. Fluid Phase Equilib. 36, 235–246 (1987)

    Article  CAS  Google Scholar 

  47. Coan, C.R., King, A.D.J.: Solubility of water in compressed carbon dioxide, nitrous oxide, and ethane. Evidence for hydration of carbon dioxide and nitrous oxide in the gas phase. J. Am. Chem. Soc. 93, 1857–1862 (1971)

    Article  Google Scholar 

  48. Dohrn, R., Bunz, A.P.: Experimental measurements of phase equilibria for ternary and quaternary systems of glucose, water, CO2 and ethanol with a novel apparatus. Fluid Phase Equilib. 83, 149–158 (1993)

    Article  CAS  Google Scholar 

  49. D’Souza, R., Patrick, J.R., Teja, A.S.: High pressure phase equilibria in the carbon dioxide–n-hexadecane and carbon dioxide–water systems. Can. J. Chem. Eng. 66, 319–323 (1988)

    Article  Google Scholar 

  50. Gillepsie P.C., Wilson, G.M.: Vapor–liquid and liquid–liquid equilibria: Water–methane, water–carbon dioxide, water–hydrogen sulfide, water-n pentane. In: Research report PR-48, Gas processors association, Tulsa, (1982)

  51. Jackson, K., Bowman, L.E., Fulton, J.L.: Water solubility measurements in supercritical fluids and high-pressure liquids using near-infrared spectroscopy. Anal. Chem. 67, 2368–2372 (1995)

    Article  CAS  Google Scholar 

  52. Muller, G., Bender, E., Maurer, G.: Dampf-Flussigkeitsgleichgewicht des ternaren Systems ammoniak-kohledioxide–wasser bei hoden wassergehalten im bereich zwischen 373 und 473 Kelvin. Ber. Bunsenges. Phys. Chem. 92, 148–160 (1988)

    Google Scholar 

  53. Rosenbauer, R.J., Bischoff, J.L., Koksalan, T.: An experimental approach to CO2 sequestration in saline aquifers: application to paradox valley, CO. Trans. Am. Geophys. Union, Fall Meeting, Abstract V32B-0974 (2001)

  54. Sako, T., Sugeta, T., Nakazawa, N., Obuko, T., Sato, M., Taguchi, T., Hiaki, T.: Phase equilibrium study of extraction and concentration of furfural produced in reactor using supercritical carbon dioxide. J. Chem. Eng. Jpn. 24, 449–454 (1991)

    Article  CAS  Google Scholar 

  55. Song, K.Y., Kobayashi, R.: Water content of CO2 in equilibrium with liquid water and/or hydrates. SPE Form Eval. 2, 500–508 (1987)

    CAS  Google Scholar 

  56. Teng, H., Yamasaki, N., Chun, M.-K.: Solubility of liquid CO2 in water at temperatures from 278 to 293 K and pressures from 6.44 MPa to 29.49 MPa and densities of the corresponding aqueous solutions. J. Chem. Thermodyn. 29, 1301–1310 (1997)

    CAS  Google Scholar 

  57. Todhiede, K., Franck, E.U.: Das Zweiphasengebiet und die kritische kurve im system kohlendioxide-wasser bis zu drucken von 3500 bar. Z. Phys. Chem. 37, 387–401 (1963)

    Article  Google Scholar 

  58. Wiebe, R., Gaddy, V.L.: The solubility in water of carbon dioxide at 50, 75, and 100 °C, at pressures to 700 atmosphere. J. Am. Chem. Soc. 61, 315–318 (1939)

    Article  CAS  Google Scholar 

  59. Wiebe, R., Gaddy, V.L.: The solubility of carbon dioxide in water at various temperatures from 12 to 40 and at pressures to 500 atmospheres: critical phenomena. J. Am. Chem. Soc. 62, 815–817 (1940)

    Article  CAS  Google Scholar 

  60. Wiebe, R., Gaddy, V.L.: Vapor phase composition of carbon dioxide water–water mixtures at various temperatures and at pressures to 700 atmospheres. J. Am. Chem. Soc. 63, 475–477 (1941)

    Article  CAS  Google Scholar 

  61. Economou, I.G., Tsonopoulos, C.: Associating models and mixing rules in equations of state for water/hydrocarbon mixtures. Chem. Eng. Sci. 52, 511–525 (1997)

    Article  CAS  Google Scholar 

  62. Yakoumis, I.V., Kontogeorgis, G.M., Voutsas, E.C., Hendriks, E.M., Tassios, D.P.: Prediction of phase equilibria in binary aqueous systems containing alkanes, cycloalkanes, and alkenes with the cubic plus association equation of state. Ind. Eng. Chem. Res. 37, 4175–4182 (1998)

    Article  CAS  Google Scholar 

  63. Wagner, W., Cooper, J.R., Dittmann, A., Kijima, J., Kretzschmar, H.-J., Kruse, A., Mares, R., Oguchi, K., Sato, H., Stocker, I., Sifner, O., Takaishi, Y., Tanishita, I., Trubenbach, J., Willkommen, T.: The IAPWS industrial formulation 1997 for the thermodynamic propeties of water and steam. Trans. ASME 122, 150–182 (2000)

    Article  CAS  Google Scholar 

  64. Prutton, C.F., Savage, R.L.: The solubility of carbon dioxide in calcium chloride–water solutions at 75, 100, 120 °C and high pressures. J. Am. Chem. Soc. 67, 1550–1554 (1945)

    Article  CAS  Google Scholar 

  65. Koschel, D., Coxam, J.-Y., Rodier, L., Majer, V.: Enthalpy and solubility of CO2 in water and NaCl(aq) at conditions of interest for geological sequestration. Fluid Phase Equilib. 247, 107–120 (2006)

    Article  CAS  Google Scholar 

  66. Malinin, S.D., Kurovskaya, N.A.: Investigation of CO2 solubility in a solution of chlorides at elevated temperatures and pressures of CO2. Geokhimiya 4, 547–551 (1975)

    Google Scholar 

  67. Duan, Z., Moller, N., Weare, J.H.: An Equation of State for the CH4–CO2–H2O System. I. Pure systems from 0 to 1,000 °C and 0 to 8,000 bar. Geochim. Cosmochim. Acta 56, 2605–2617 (1992)

    CAS  Google Scholar 

  68. Redlich, O., Kwong, J.N.S.: On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44, 233–244 (1949)

    Article  CAS  Google Scholar 

  69. Islam, A.W., Carlson, E.S.: A fully non-iterative technique for phase equilibrium and density calculations of CO2 + brine system and an equation of state for CO2. In: 37th Stanford Geothermal Reservoir Engineering Workshop Stanford University, Stanford (2012)

Download references

Acknowledgments

The work was conducted with the support of the Reservoir Simulation Joint Industry Project, a consortium of operating and service companies for Petroleum and Geosystems Engineering at The University of Texas at Austin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akand W. Islam.

Appendices

Appendix

This section provides necessary functions to calculate chemical potential μ i , compressibility factor Z, and fugacity coefficient \( \varphi_{i} \). First, μ i , which is a derivative of \( A^{\rm {res}} \) with respect to the mole number of component i at constant T, volume \( V \), and non-i components, is shown.

Expression for Chemical Potential

We discuss \( \mu_{i} \) in the order used to present the corresponding Helmohltz energy terms, i.e., hard-sphere, chain, dispersion, and association terms. The expression is:

$$ \mu_{i}^{\rm {res}} = \mu_{i}^{\rm {hs}} + \mu_{i}^{\rm {chain}} + \mu_{i}^{\rm {disp}} + \mu_{i}^{\rm {assoc}} . $$
(25)

The hard-sphere contribution to the chemical potential, \( \mu_{i}^{\rm {hs}} \), can be expressed as:

$$ \begin{gathered} \frac{{\mu_{i}^{\rm {hs}} }}{RT} = \frac{{m_{i} d_{i}^{3} \zeta_{0} + 3m_{i} d_{i}^{2} \zeta_{1} + 3m_{i} d_{i} \zeta_{2} - 3m_{i} d_{i}^{2} \zeta_{2}^{2} /\zeta_{3}^{2} + 2m_{i} d_{i}^{3} \zeta_{2}^{3} /\zeta_{3}^{3} - m_{i} d_{i}^{3} \zeta_{2}^{3} /\zeta_{3}^{2} }}{{1 - \zeta_{3} }} \hfill \\ { + }\frac{{3m_{i} d_{i}^{3} \zeta_{1} \zeta_{2} + 3m_{i} d_{i}^{2} \zeta_{2}^{2} /\zeta_{3}^{2} - m_{i} d_{i}^{3} \zeta_{2}^{3} /\zeta_{3}^{2} - 2m_{i} d_{i}^{3} \zeta_{2}^{3} /\zeta_{3}^{3} }}{{\left( {1 - \zeta } \right)^{2} }} + \frac{{2m_{i} d_{i}^{3} \zeta_{2}^{3} /\zeta_{3}^{2} }}{{\left( {1 - \zeta_{3} } \right)^{3} }} \hfill \\ { + }\frac{{(3m_{i} d_{i}^{2} \zeta_{2}^{2} \zeta_{3} - 2m_{i} d_{i}^{3} \zeta_{2}^{3} )\ln (1 - \zeta_{3} )}}{{\zeta_{3}^{3} }} - m_{i} \ln (1 - \zeta_{3} ). \hfill \\ \end{gathered} $$
(26)

\( \mu_{i}^{\rm {chain}} \), the chain contribution to the chemical potential, is expressed as:

$$ \frac{{\mu_{i}^{\rm {chain}} }}{RT} = (1 - m_{i} )\ln [g_{i}^{\rm {hs}} (d_{i} )] + \rho \sum\limits_{i = 1}^{N} {\frac{{x_{i} (1 - m_{i} )}}{{g_{i}^{\rm {hs}} (d_{i} )}}\left[ {\frac{{\partial g_{i}^{\rm {hs}} }}{{\partial \rho_{i} }}} \right]_{{T,V,\rho_{j \ne i} }} } , $$
(27)

where

$$ \left[ {\frac{{\partial g_{i}^{\rm {hs}} (d_{i} )}}{{\partial \rho_{i} }}} \right]_{{T,V,\rho_{j \ne i} }} = \frac{\pi }{6}m_{i} d_{i}^{2} N_{\rm {AV}} \left[ {\frac{{d_{i} }}{{(1 - \zeta_{3} )^{2} }} + \frac{{3d_{i} (1 - \zeta_{3} + 2d_{i} \zeta_{2} )}}{{2(1 - \zeta )^{3} }} + \frac{{d_{i}^{2} (2\zeta_{2} - 2\zeta_{2} \zeta_{3} + 3d_{i} \zeta_{2}^{2} )}}{{2(1 - \zeta_{3} )^{4} }}} \right]. $$
(28)

The dispersion contribution to the chemical potential, \( \mu_{i}^{\rm {disp}} \) is expressed as:

$$ \frac{{\mu_{i}^{\rm {disp}} }}{RT} = \frac{{m_{i} A_{1}^{\rm {disp}} }}{{T_{\rm {R}} }} + \frac{{m_{i} A_{2}^{\rm {disp}} }}{{T_{\rm {R}}^{2} }} + \frac{{\rho_{s} }}{{T_{\rm {R}} }}\left[ {\frac{{\partial A_{1}^{\rm {disp}} }}{{\partial \rho_{i} }}} \right]_{{T,V,\rho_{j \ne i} }} - \left( {\frac{{\rho_{s} A_{1}^{\rm {disp}} }}{{T_{\rm {R}}^{2} }} + 2\frac{{\rho_{s} A_{2}^{\rm {disp}} }}{{T_{\rm {R}}^{3} }}} \right)\left[ {\frac{{\partial T_{\rm {R}} }}{{\partial \rho_{i} }}} \right]_{{T,V,\rho_{j \ne i} }} , $$
(29)

where

$$ \left[ {\frac{{\partial A_{1}^{\rm {disp}} }}{{\partial \rho_{i} }}} \right]_{{T,V,\rho_{j \ne i} }} = \frac{{m_{i} d^{3} }}{\sqrt 2 }( - 8.5959 - 9.0848\rho_{\rm {R}} - 6.3807\rho_{\rm {R}}^{2} + 41.141\rho_{\rm {R}}^{3} ), $$
(30)
$$ \left[ {\frac{{\partial A_{2}^{\rm {disp}} }}{{\partial \rho_{i} }}} \right]_{{T,V,\rho_{j \ne i} }} = \frac{{m_{i} d_{i}^{3} }}{\sqrt 2 }\left( { - 1.9075 + 19.9449\rho_{\rm {R}} - 66.648\rho_{\rm {R}}^{2} + 63.616\rho_{\rm {R}}^{3} } \right), $$
(31)
$$ \left[ {\frac{{\partial T_{\rm {R}} }}{{\partial \rho_{i} }}} \right]_{{T,V,\rho_{j \ne i} }} = \frac{{2m_{i} \rho \left( {\varepsilon_{x} \sum\limits_{l = 1}^{N} {x_{l} m_{l} \rho_{il}^{3} - \sum\limits_{l = 1}^{N} {x_{l} m_{l} \rho_{il}^{3} \varepsilon_{il} } } } \right)}}{{\beta \varepsilon_{x}^{2} \sigma_{x}^{3} \rho_{s}^{2} }}. $$
(32)

\( \mu_{i}^{\rm {assoc}} \), the association contribution to the chemical potential can be expressed as:

$$ \frac{{\mu_{i}^{\rm {assoc}} }}{RT} = \left\{ {\sum\limits_{{A_{i} }} {\left( {\ln X^{{A_{i} }} - .5X^{{A_{i} }} } \right) + .5M_{i} + \sum\limits_{j} {x_{j} \rho \sum\limits_{{A_{j} }} {\left[ {\left( {\frac{{\partial X^{{A_{j} }} }}{{\partial \rho_{i} }}} \right)_{{T,\rho_{j \ne i} }} \left( {\frac{1}{{X^{{A_{j} }} }} - .5} \right)} \right]} } } } \right\}, $$
(33)

where

$$ \begin{gathered} \left( {\frac{{\partial X^{{A_{j} }} }}{{\partial \rho_{j} }}} \right)_{{T,\rho_{j \ne i} }} = - \left( {X^{{A_{j} }} } \right)^{2} N_{\rm {AV}} \left\{ {\sum\limits_{{B_{i} }} {X^{{B_{i} }} } \Delta^{{A_{j} B_{i} }} + \rho \sum\limits_{k} {\sum\limits_{{B_{k} }} {X_{k} \left[ {\Delta^{{A_{j} B_{kl} }} \left( {\frac{{\partial X^{{B_{k} }} }}{{\partial \rho_{i} }}} \right)_{{T,\rho_{l \ne i} }} } \right.} } + } \right. \hfill \\ \, \left. {X^{{B_{k} }} \left. {\left( {\frac{{\partial \Delta^{{A_{j} B_{k} }} }}{{\partial \rho_{i} }}} \right)_{{T,\rho_{l \ne i} }} } \right]} \right\}. \hfill \\ \end{gathered} $$
(34)

\( \left( {\frac{{\partial X^{{B_{k} }} }}{{\partial \rho_{i} }}} \right)_{{T,\rho_{l \ne i} }} \) and so forth can be found similarly following Eq. 34. Now the expression for \( \left( {\frac{{\partial \Delta^{{A_{j} B_{k} }} }}{{\partial \rho_{i} }}} \right)_{{T,\rho_{l \ne i} }} \)is given by:

$$ \left( {\frac{{\partial \varDelta^{{A_{j} B_{k} }} }}{{\partial \rho_{i} }}} \right)_{{T,\rho_{l \ne i} }} = d_{jk}^{3} \left[ {\frac{{\partial g_{jk} (d_{jk} )^{hs} }}{{\partial \rho_{i} }}} \right]_{{T,\rho_{l \ne i} }} \left[ {\exp \left( {\varepsilon^{{A_{j} B_{k} }} /kT} \right) - 1} \right]\kappa^{{A_{j} B_{k} }} , $$
(35)

where

$$ \begin{gathered} \left[ {\frac{{\partial g_{jk} (d_{jk} )^{\rm {hs}} }}{{\partial \rho_{i} }}} \right]_{{T,\rho_{l \ne i} }} = \frac{{\pi N_{\rm {AV}} }}{6}m_{i} \left\{ {\frac{{d_{i}^{3} }}{{(1 - \zeta_{3} )^{2} }}} \right. + 3\frac{{d_{j} d_{k} }}{{d_{j} + d_{k} }}\left[ {\frac{{d_{i}^{2} }}{{(1 - \zeta_{3} )^{2} }} + \left. {\frac{{2d_{i}^{3} \zeta_{2} }}{{(1 - \zeta_{3} )^{3} }}} \right]} \right. \hfill \\ { + 2}\left( {\frac{{d_{j} d_{k} }}{{d_{j} + d_{k} }}} \right)^{2} \left. {\left[ {\frac{{2d_{i}^{2} \zeta_{2} }}{{(1 - \zeta_{3} )^{3} }} + \frac{{3d_{i}^{3} \zeta_{2}^{2} }}{{(1 - \zeta_{3} )^{4} }}} \right]} \right\}. \hfill \\ \end{gathered} $$
(36)

Expression for Compressibility Factor Z

The compressibility factor is calculated from the Helmholtz energy, A, through:

$$ Z = \rho \left[ {\frac{\partial (A/RT)}{\partial \rho }} \right]_{T,N} = 1 + Z^{\rm {hs}} + Z^{\rm {disp}} + Z^{\rm {chain}} + Z^{\rm {assoc}} , $$
(37)

where:

$$ \begin{gathered} Z^{\rm {hs}} = \frac{{\sum\limits_{i = 1}^{N} {x_{i} m_{i} } }}{{\zeta_{0} }}\left[{\frac{{6\zeta_{1} \zeta_{2} - \zeta_{2}^{3} /\zeta_{3}^{3} - \zeta_{2}^{3} /\zeta_{3} + \zeta_{0} \zeta_{3} }}{{1 - \zeta_{3} }}} \right. \hfill \\ +\, \frac{{6\zeta_{1} \zeta_{2} \zeta_{3} - 3\zeta_{1} \zeta_{2} - 2\zeta_{2}^{3} /\zeta_{3} + 2\zeta_{2}^{3} /\zeta_{3}^{2} }}{{(1 - \zeta_{3} )^{2} }} \hfill \\ + \, \left. {\frac{{3\zeta_{2}^{3} /\zeta_{3} - \zeta_{2}^{3} /\zeta_{3}^{2} }}{{(1 - \zeta_{3} )^{3} }}} \right], \hfill \\ \end{gathered} $$
(38)
$$ Z^{\text{disp}} = \sum\limits_{i = 1}^{N} {x_{i} m_{i} \left( {Z_{1}^{\text{disp}} /T_{\rm {R}} + Z_{2}^{\text{disp}} /T_{\rm {R}}^{2} } \right)} , $$
(39)

and

$$ Z_{1}^{\rm {disp}} = \rho_{\rm {R}} ( - 8.5959 - 9.0848\rho_{\rm {R}} - 6.3807\rho_{\rm {R}}^{2} + 41.1416\rho_{\rm {R}}^{3} ), $$
(40)
$$ Z_{2}^{\rm {disp}} = \rho_{\rm {R}} ( - 1.9075 + 19.9449\rho_{\rm {R}} - 66.648\rho_{\rm {R}}^{2} + 63.616\rho_{\rm {R}}^{3} ), $$
(41)
$$ Z^{\rm {chain}} = \sum\limits_{i = 1}^{N} {\frac{{x_{i} (1 - m_{i} )}}{{g_{i}^{\rm {hs}} (d_{i} )}}\left[ {\frac{{\zeta_{3} + 1.5d_{i} \zeta_{2} }}{{(1 - \zeta_{3} )^{2} }} + \frac{{3d_{i} \zeta_{2} \zeta_{3} + d_{i}^{2} \zeta_{2}^{2} }}{{(1 - \zeta_{3} )^{3} }} + \frac{{1.5d_{i}^{2} \zeta_{2}^{2} \zeta_{3} }}{{(1 - \zeta_{3} )^{4} }}} \right]} , $$
(42)
$$ Z^{\rm {assoc}} = \frac{1}{RT}\left[ {\sum\limits_{i} {x_{i} \mu_{i}^{\rm {assoc}} - A^{\rm {assoc}} } } \right]. $$
(43)

Here \( \mu_{i}^{\rm {assoc}} \)and \( A^{\rm {assoc}} \)are presented by Eqs. 33 and 20, respectively.

Expression for Fugacity Coefficient

The relation between \( \varphi_{i} \)(fugacity coefficient) and the residual chemical potential of component i is as follows:

$$ \ln \varphi_{i} = \frac{{\mu_{i}^{\rm {res}} }}{RT} - \ln Z. $$
(44)

\( \mu_{i}^{\rm {res}} \) and Z can be obtained from Eqs. 25 and 37, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, A.W., Sepehrnoori, K. & Patzek, T.W. A Computationally Efficient Approach to Applying the SAFT Equation for CO2 + H2O Phase Equilibrium Calculations. J Solution Chem 43, 241–254 (2014). https://doi.org/10.1007/s10953-013-0119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0119-2

Keywords

Navigation