Skip to main content
Log in

Surface and Solution Properties of Cationic Gemini Surfactants with Primary Linear Alkanols

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Using surface tension and fluorescence methods, the surface and solution properties of two cationic gemini surfactants {pentanediyl-1,5-bis(dimethylcetylammonium bromide) and hexanediyl-1,6-bis(dimethylcetylammonium bromide)} (referred to as 16-5-16 and 16-6-16) have been studied in the presence and absence of primary linear alkanols. Parameters studied include the critical micelle concentration (CMC), C 20 (the surfactant concentration required to reduce the surface tension of the solvent by 20 mN·m−1), Г max (maximum surface excess), and A min (minimum surface area per molecule). These parameters indicate mixed micelle formation and, therefore, surfactant-additive interaction parameters in mixed micelles and mixed monolayers, as well as activity coefficients, were calculated. A synergistic effect was observed in all instances and was found to be correlated with the chain length of the alkanols. The CMC values of 16-s-16 (s = 5, 6) decrease with increasing alkanol concentration and the extent of this effect follows the sequence: 1-octanol (C8OH) > 1-heptanol (C7OH) > hexan-1-ol (C6OH) > 1-pentanol (C5OH) > butanol (C4OH). The micelle aggregation number (N agg) of mixed micelles has been obtained using the steady state fluorescence quenching method. The micropolarity of gemini/alkanol systems has been evaluated from the ratio of intensity of peaks (I 1/I 3) of the pyrene fluorescence emission spectra. Results are interpreted on the basis of the structure of mixed micelles and monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rosen, M.J.: Surfactants and Interfacial Phenomena, 3rd edn. Wiley-Interscience, New York (2004)

    Book  Google Scholar 

  2. Mukerjee, P., Mysels, K.J.: Critical Micelle Concentrations of Aqueous Surfactant Systems. US Government Printing Office, Washington, DC (1971)

    Google Scholar 

  3. Rosen, M.J., Tracy, D.J.: Gemini surfactants. J. Surf. Deterg. 1, 547–554 (1998)

    Article  CAS  Google Scholar 

  4. Menger, F.M., Keiper, J.S.: Gemini surfactants. Angew. Chem. Int. Ed. 39, 1906–1920 (2000)

    Article  Google Scholar 

  5. Zana, R.: Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv. Colloid Interface Sci. 97, 205–253 (2002)

    Article  CAS  Google Scholar 

  6. Ref. 1, p. 415

  7. Zana, R., Esumi, K., Ueno, M. (eds.): Structure–Performance Relationship in Surfactants, 2nd edn. Dekker, New York (2003)

    Google Scholar 

  8. Kabir-ud-Din, Shafi, M., Bhat, P.A., Dar, A.A.: Solubilization capabilities of mixtures of cationic gemini surfactant with conventional cationic, nonionic and anionic surfactants towards polycyclic aromatic hydrocarbons. J. Hazard Mater 167, 575–581 (2009)

    Article  CAS  Google Scholar 

  9. Kern, F., Lequeux, F., Zana, R., Candau, S.J.: Dynamic properties of salt-free viscoelastic micellar solutions. Langmuir 10, 1714–1723 (1994)

    Article  CAS  Google Scholar 

  10. Zana, R., Talmon, Y.: Dependence of aggregate morphology on structure of dimeric surfactants. Nature 362, 228–230 (1993)

    Article  CAS  Google Scholar 

  11. Karaborni, S., Esselink, K., Hilbers, P.A.J., Smit, B., Karthauser, J., van Os, N.M., Zana, R.: Simulating the self-assembly of gemini (dimeric) surfactants. Science 26, 254–256 (1994)

    Article  Google Scholar 

  12. Brinchi, L., Germani, R., Goracci, L., Savelli, G., Bunton, C.A.: Decarboxylation and dephosphorylation in new gemini surfactants. Changes in aggregate structures. Langmuir 18, 7821–7825 (2002)

    Article  CAS  Google Scholar 

  13. Kabir-ud-Din, Fatma, W.: Role of cationic gemini surfactants toward enhanced ninhydrin–tryptophan reaction. J. Phys. Org. Chem. 20, 440–447 (2007)

    Article  Google Scholar 

  14. Imam, T., Devinsky, F., Lacko, I., Mlynarcik, D., Krasnec, L.: Preparation and antimicrobial activity of some new bisquaternary ammonium salts. Pharmazie 38, 308–310 (1983)

    CAS  Google Scholar 

  15. Devinsky, F., Lacko, I., Mlynarcik, D., Racasky, V., Krasnec, L.: Relationship between critical micelle concentration and minimum inhibitory concentrations of some non-aromatic quaternary ammonium salts and amine oxides. Tenside Deterg. 22, 10–15 (1985)

    CAS  Google Scholar 

  16. Fendler, J.H., Fendler, E.J.: Catalyses in Micellar and Macromolecular Systems. Academic Press, New York (1975)

    Google Scholar 

  17. Kabir-ud-Din, Fatma, W., Khatoon, S., Khan, Z.A., Naqvi, A.Z.: Surface and solution properties of alkanediyl-α,ω-bis(dimethylcetylammonium bromide) gemini surfactants in the presence of additives. J. Chem. Eng. Data 53, 2291–2300 (2008)

    Article  CAS  Google Scholar 

  18. Azum, N., Naqvi, A.Z., Akram, M., Kabir-ud-Din, : Properties of mixed aqueous micellar solutions formed by cationic alkanediyl-α,ω-bis(tetradecyldimethylammonium bromide) and alkyltrimethylammonium bromides: fluorescence and conductivity studies. J. Chem. Eng. Data 54, 1518–1523 (2009)

    Article  CAS  Google Scholar 

  19. Khan, I.A., Mohammad, R., Alam, Md.S., Kabir-ud-Din, : The interaction of cationic gemini surfactant 1,4-butanediyl-α,ω-bis(dimethylcetylammonium bromide) with primary linear alkanols. J. Dispers. Sci. Technol. 31, 129–137 (2010)

    Article  CAS  Google Scholar 

  20. Khan, I.A., Mohammad, R., Alam, Md.S., Kabir-ud-Din, : Mixed micellization of cationic gemini surfactants with primary linear alkylamines. J. Surf. Deterg. 13, 179–188 (2010)

    Article  CAS  Google Scholar 

  21. Rosen, M.J., Zhou, Q.: Surfactant–surfactant interactions in mixed monolayer and mixed micelle formation. Langmuir 17, 3532–3537 (2001)

    Article  CAS  Google Scholar 

  22. Zana, R.: Aqueous surfactant–alcohol systems: a review. Adv. Colloid Interface Sci. 57, 1–64 (1995)

    Article  CAS  Google Scholar 

  23. Kabir-ud-Din, Fatma, W., Khan, Z.A.: A 1H NMR study of 1,4-bis (N-hexadecyl-N,N-dimethylammonium) butane dibromide/sodium anthranilate system: spherical to rod-shaped transition. Colloid Polym. Sci. 284, 1339–1344 (2006)

    Article  CAS  Google Scholar 

  24. Rubingh, D.N., Mittal, K.L. (eds.): Solution Chemistry of Surfactants, vol. 1. Plenum, New York (1979)

    Google Scholar 

  25. Moya, S.E., Schulz, P.C.: The aggregation of the sodium dodecyl sulfate–n-octanol–water system at low concentration. Colloid Polym. Sci. 277, 735–742 (1999)

    Article  CAS  Google Scholar 

  26. Proverbio, Z.E., Schulz, P.C., Puig, J.E.: Aggregation of the aqueous dodecyltrimethylammonium bromide–didodecyldimethylammonium bromide system at low concentration. Colloid Polym. Sci. 280, 1045–1052 (2002)

    Article  CAS  Google Scholar 

  27. De, S., Aswal, V.K., Goyal, P.S., Bhattacharya, S.: Role of spacer chain length in dimeric micellar organization. Small-angle neutron scattering and fluorescence studies. J. Phys. Chem. 100, 11664–11671 (1996)

    Article  CAS  Google Scholar 

  28. Schulz, P.C., Rodríguez, J.L., Minardi, R.M., Sierra, M.B., Morini, M.A.: Are the mixtures of homologous surfactants ideal? J. Colloid Interface Sci. 303, 264–271 (2006)

    Article  CAS  Google Scholar 

  29. El-Kadi, N., Martins, F., Clausse, D., Schulz, P.C.: Critical micelle concentrations of aqueous hexadecytrimethylammonium bromide–sodium oleate mixtures. Colloid Polym. Sci. 281, 353–362 (2003)

    Article  CAS  Google Scholar 

  30. Sierra, M.B., Morini, M.A., Schulz, P.C.: The aqueous cationic system sodium undecenoate–dodecyltrimethylammonium bromide at low concentration. Colloid Polym. Sci. 282, 633–641 (2004)

    Article  CAS  Google Scholar 

  31. Sierra, M.B., Morini, M.A., Schulz, P.C., Ferreira, M.L.: Unusual volumetric and hydration behavior of the catanionic system sodium undecenoate: sodecyltrimethylammonium bromide. Colloid Polym. Sci. 283, 1016–1024 (2005)

    Article  CAS  Google Scholar 

  32. Ferreira, M.L., Sierra, M.B., Morini, M.A., Schulz, P.C.: Computational study of the structure and behavior of aqueous mixed system sodium unsaturated carboxylate–dodecyltrimethylammonium bromide. J. Phys. Chem. B 110, 17600–17606 (2006)

    Article  CAS  Google Scholar 

  33. Sierra, M.B., Morini, M.A., Schulz, P.C., Junquera, E., Aicart, E.: Effect of double bonds in the formation of sodium dodecanoate and sodium 10-undecenoate mixed micelles in water. J. Phys. Chem. B 111, 11692–11699 (2007)

    Article  CAS  Google Scholar 

  34. Miraglia, D.B., Schulz, E.N., Rodriguez, J.L.M., Schulz, P.C., Salinas, D.: Effect of the concentration and composition on the size and shape of micelles of sodium oleate–cetyltrimethylammonium bromide mixtures. J. Colloid Interface Sci. 351, 197–202 (2010)

    Article  CAS  Google Scholar 

  35. Ferreira, M.L., Sierra, M.B., Morini, M.A., Rodríguez, J.L.M., Minardi, R., Schulz, P.C.: Explanation of experimental results of mixed micelles of homologous surfactants through a mm 2 bidimensional modeling. J. Phys. Chem. B 114, 14924–14933 (2010)

    Article  CAS  Google Scholar 

  36. Miyagishi, S., Ishibai, Y., Asakawa, T., Nishida, M.: Critical micelle concentration in mixtures of N-acyl amino acid surfactants. J. Colloid Interface Sci. 103, 164–169 (1985)

    Article  CAS  Google Scholar 

  37. Treiner, C., Vaution, C., Miralles, E., Puiseux, F.: Influence of sodium dodecylsulphate and of inorganic electrolytes on the micellar solubilization of butobarbitone in aqueous polyoxyethylene lauryl ether solutions at 298.15 K. Colloids Surf. 14, 285–292 (1985)

    CAS  Google Scholar 

  38. Holland, P.M., Rubingh, D.N.: Nonideal multicomponent mixed micelle model. J. Phys. Chem. 87, 1984–1990 (1983)

    Article  CAS  Google Scholar 

  39. Schulz, P.C., Minardi, R.M., Vuano, B.: Dodecyltrimethylammonium bromide–disodium dodecanephosphonate mixed micelles. Colloid Polym. Sci. 277, 837–845 (1999)

    Article  CAS  Google Scholar 

  40. Schulz, P.C.: Steric fitting of the spherical micelle size. Colloid Polym. Sci. 269, 612–619 (1991)

    Article  CAS  Google Scholar 

  41. Schulz, P.C.: Steric fitting of the rodlike micelle size. J. Colloid Interface Sci. 152, 333–337 (1991)

    Article  Google Scholar 

  42. Kalyanasundram, K., Thomas, J.K.: Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 99, 2039–2044 (1977)

    Article  Google Scholar 

  43. Maeda, H.: A simple thermodynamic analysis of the stability of ionic/nonionic mixed micelles. J. Colloid Interface Sci. 172, 98–105 (1995)

    Article  CAS  Google Scholar 

  44. Goldman, S., Joslin, C.: Why hydrogen-bonded liquids tend to have high static dielectric constants. J. Phys. Chem. 97, 12349–12355 (1993)

    Article  CAS  Google Scholar 

  45. Schulz, P.C., Minardi, R.M., Vuano, B.: Solubilization of styrene in the catanionic system dodecyltrimethylammonium hydroxide–n-dodecanephosphonic acid. Colloid Polym. Sci. 276, 278–281 (1998)

    Article  CAS  Google Scholar 

  46. Ferchmin, D.: Phase diagram of hydration shells in ionic solutions. J. Phys. Chem. 99, 5658–5665 (1995)

    Article  Google Scholar 

  47. Lamm, G., Pack, G.R.: Calculation of dielectric constants near polyelectrolytes in solution. J. Phys. Chem. B 101, 959–965 (1997)

    Article  CAS  Google Scholar 

  48. Anand, K., Yadav, O.P., Singh, P.P.: Studies on the surface and thermodynamic properties of some surfactants in aqueous and water + 1,4-dioxane solutions. Colloids Surf. 55, 345–358 (1991)

    Article  CAS  Google Scholar 

  49. Lu, J.R., Li, Z.X., Thomas, R.K., Penfold, J.: Structure of hydrocarbon chains in surfactant monolayers at the air/water interface: neutron reflection from dodecyl trimethylammonium bromide. J. Chem. Soc. Faraday Trans. 92, 403–408 (1996)

    Article  CAS  Google Scholar 

  50. Sugihara, G., Miyazono, A., Nagadome, S., Oda, T., Hayashi, Y., Ko, J.-S.: Adsorption and micelle formation of mixed surfactant systems in water. II: a combination of cationic gemini-type surfactant with MEGA-10. J. Oleo Sci. 52, 449–461 (2003)

    Article  CAS  Google Scholar 

  51. Ko, J.-S., Oh, S.-W., Kim, Y.-S., Nakashima, N., Nagadome, S., Sugihara, G.: Adsorption and micelle formation of mixed surfactant systems in water. J. Oleo Sci. 53, 109–126 (2004)

    Article  CAS  Google Scholar 

  52. Li, F., Rosen, M.J., Sulthana, S.B.: Surface properties of cationic gemini surfactants and their interaction with alkylglucoside or maltoside surfactants. Langmuir 17, 1037–1042 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Riyaj Mohammad is thankful to UGC, New Delhi, for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabir-ud-Din.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10953_2013_115_MOESM1_ESM.doc

Additional tables, figures and other data showing: (i) effect of alkanol concentrations on various physico-chemical properties of cationic gemini surfactants in aqueous solutions at 303 K studied by surface tensiometry, (ii) micellar compositions, interaction parameters, and activity coefficients of binary mixtures of cationic gemini surfactants and alkanols at different mole fractions of alkanols, (iii) average aggregation numbers, micropolarity and apparent dielectric constant for the gemini/alkanol systems evaluated on the basis of steady-state fluorescence technique, (iv) representative plots of surface tension versus log10 [surfactant] at different mole fractions of added alkanols, and (v) intensity versus wavelength plot for butanol/16-5-16 at different mole fractions of added butanol (DOC 973 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammad, R., Khan, I.A., Kabir-ud-Din et al. Surface and Solution Properties of Cationic Gemini Surfactants with Primary Linear Alkanols. J Solution Chem 42, 2310–2328 (2013). https://doi.org/10.1007/s10953-013-0115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0115-6

Keywords

Navigation