Abstract
Seven commercially sourced acetylacetonate salts were investigated in deep eutectic solvents (DESs that were prepared from ethylene glycol and trifluoroacetamide hydrogen bond donors) by cyclic voltammetry, to identify electrolytes suitable for future applications in electrochemical energy storage devices. Although the solubilities are low and on the order of 0.02 mol·L−1 for the most soluble salts, some were found to display encouraging quasi-reversible electrochemical kinetics. For instance, the diffusion coefficients of copper(II) acetylacetonate and iron(III) acetylacetonate in the trifluoroacetamide based DES are 1.14 × 10−8 and 5.12 × 10−9 cm2·s−1, which yields rate constants of 3.16 × 10−3 and 8.43 × 10−6 cm·s−1, respectively. These results are better than those obtained with the DESs prepared from ethylene glycol. The poor kinetics of the iron(III) acetylacetonate system was possibly due to the hygroscopic nature of the DESs that resulted in a continuous build-up of moisture in the system in spite of the maintenance of an inert atmosphere by means of a plastic glove bag. Further work is thus envisaged in an inert dry box that could lead to H-type glass cell charge/discharge experiments in the future.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Schreiber, E., Ziener, U., Manzke, A., Plettl, A., Ziemann, P., Landfester, K.: Preparation of narrowly size distributed metal-containing polymer latexes by miniemulsion and other emulsion techniques: applications for nanolithography. Chem. Mater. 21, 1750–1760 (2009)
Mahdavian, M., Attar, M.M.: Electrochemical behaviour of some transition metal acetylacetonate complexes as corrosion inhibitors for mild steel. Corros. Sci. 51, 409–414 (2009)
Dias, M.L., Crossetti, G.L., Bormioli, C., Giarusso, A., de Santa Maria, L.C., Coutinho, F.M.B., Porri, L.: Isospecific polymerization of styrene with supported nickel acetylacetonate/methylaluminoxane catalysts. Polym. Bull. 40, 689–694 (1998)
Coutinho, F.M.B., Iwamoto, R.K., Costa, M.A.S., de Santa Maria, L.C.: Polymerization of ethylene by chromium acetylacetonate/methylaluminoxane catalyst system. Polym. Bull. 40, 695–700 (1998)
Koritala, S.: Homogeneous catalytic hydrogenation of soybean oil: palladium acetylacetonate. J. Am. Oil Chem. Soc. 62, 517–520 (1985)
Tocher, J.H., Fackler Jr, J.P.: Electrochemical investigations of several transition metal tris-(acetylacetonate) complexes. Inorg. Chim. Acta 102, 211–215 (1985)
Naderi, R., Mahdavian, M., Attar, M.M.: Electrochemical behavior of organic and inorganic complexes of Zn(II) as corrosion inhibitors for mild steel: solution phase study. Electrochim. Acta 54, 6892–6895 (2009)
Mahdavian, M., Naderi, R.: Corrosion inhibition of mild steel in sodium chloride solution by some zinc complexes. Corros. Sci. 53, 1194–1200 (2011)
Migowski, P., Dupont, J.: Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chem. Eur. J. 13, 32–39 (2006)
Umpierre, A.P., Machado, G., Fecher, G.H., Morais, J., Dupont, J.: Selective hydrogenation of 1,3-butadiene to 1-butene by Pd(0) nanoparticles embedded in imidazolium ionic liquids. Adv. Synth. Catal. 347, 1404–1412 (2005)
Wang, Y., Yang, H.: Synthesis of CoPt nanorods in ionic liquids. J. Am. Chem. Soc. 127, 5316–5317 (2005)
Lewandowski, A., Waligora, L., Galinski, M.: Electrochemical behavior of cobaltocene in ionic liquids. J. Solution Chem. 42, 251–262 (2013)
Dupont, J., Scholten, J.D.: On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem. Soc. Rev. 39, 1780–1804 (2010)
Abbott, A.P., McKenzie, K.J.: Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys. 8, 4265–4279 (2006)
Abbott, A.P., Frisch, G., Ryder, K.S.: Metal complexation in ionic liquids. Annu. Rep. Prog. Chem. A 104, 21–45 (2008)
Aidoudi, F.H., Byrne, P.J., Allan, P.K., Teat, S.J., Lightfoot, P., Morris, R.E.: Ionic liquids and deep eutectic mixtures as new solvents for the synthesis of vanadium fluorides and oxyfluorides. Dalton Trans. 40, 4324–4331 (2011)
Abbott, A.P., Ttaib, K.E., Ryder, K.S.: Electrodeposition of nickel using eutectic based ionic liquids. Trans. Inst. Met. Finish. 86, 234–240 (2008)
Dai, M., Song, L., LaBelle, J.T., Vogt, B.D.: Ordered mesoporous carbon composite films containing cobalt oxide and vanadia for electrochemical applications. Chem. Mater. 23, 2869–2878 (2011)
Armand, M., Tarascon, J.-M.: Building better batteries. Nature 451, 652–657 (2008)
Portet, C., Taberna, P.L., Simon, P., Flahaut, E., Robert, C.L.: High power density electrodes for carbon supercapacitor applications. Electrochim. Acta 50, 4174–4181 (2005)
Sleightholme, A.E.S., Shinkle, A.A., Liu, Q., Li, Y., Monroe, C.W., Thompson, L.T.: Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries. J. Power Source 196, 5742–5745 (2011)
Chakrabarti, M.H., Roberts, E.P.L., Bae, C., Saleem, M.: Ruthenium based redox flow battery for solar energy storage. Energy Convers. Manage. 52, 2501–2508 (2011)
Liu, Q., Shinkle, A.A., Li, Y., Monroe, C.W., Thompson, L.T., Sleightholme, A.E.S.: Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries. Electrochem. Commun. 12, 1634–1637 (2010)
Chakrabarti, M.H., Dryfe, R.A.W., Roberts, E.P.L.: Organic electrolytes for redox flow batteries. J. Chem. Soc. Pak. 29, 294–300 (2007)
Liu, Q., Sleightholme, A.E.S., Shinkle, A.A., Li, Y., Thompson, L.T.: Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries. Electrochem. Commun. 11, 2312–2315 (2009)
Chakrabarti, M.H., Dryfe, R.A.W., Roberts, E.P.L.: Evaluation of electrolytes for redox flow battery applications. Electrochim. Acta 52, 2189–2195 (2007)
Chakrabarti, M.H., Roberts, E.P.L., Saleem, M.: Charge/discharge performance of a novel undivided redox flow battery for renewable energy storage. Int. J. Green Energy 7, 445–460 (2010)
Bae, C., Chakrabarti, H., Roberts, E.: A membrane free electrochemical cell using porous flow-through graphite felt electrodes. J. Appl. Electrochem. 38, 637–644 (2008)
Chakrabarti, M.H., Roberts, E.P.L.: Electrochemical separation of ferro/ferricyanide using a membrane free redox flow cell. NED Univ. J. Res. 5, 43–59 (2008)
Leung, P., Li, X., Ponce de León, C., Berlouis, L., Low, C.T.J., Walsh, F.C.: Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2, 10125–10156 (2012)
Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S., Saleem, M., Mustafa, I.: Redox flow battery for energy storage. Arab. J. Sci. Eng. 38, 723–739 (2012)
Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2001)
Bahadori, L., Manan, N.S.A., Chakrabarti, M.H., Hashim, M.A., Mjalli, F.S., Al Nashef, I.M., Hussain, M.A., Low, C.T.J.: The electrochemical behaviour of ferrocene in deep eutectic solvents based on quaternary ammonium and phosphonium salts. Phys. Chem. Chem. Phys. 15, 1707–1714 (2013)
Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K.: Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142–9147 (2004)
Chakrabarti, M.H., Brandon, N.P., Hashim, M.A., Mjalli, F.S., AlNashef, I.M., Bahadori, L., Abdul Manan, N.S., Hussain, M.A., Yufit, V.: Cyclic voltammetry of iron (III) Acetylacetonate in quaternary ammonium and phosphonium based deep eutectic solvents. Int. J. Electrochem. Sci. 8, 9652–9676 (2013)
Tsierkezos, N.G.: Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. J. Solution Chem. 36, 289–302 (2007)
Hayyan, M., Mjalli, F.S., Hashim, M.A., Al Nashef, I.M., Mei, T.X.: Investigating the electrochemical windows of ionic liquids. J. Ind. Eng. Chem. 19, 106–112 (2013)
Sun, J., Forsyth, M., MacFarlane, D.R.: Room-temperature molten salts based on the quaternary ammonium ion. J. Phys. Chem. B 102, 8858–8864 (1998)
Rogers, E.I., Ljukic, B.S., Hardacre, C., Compton, R.G.: Electrochemistry in room-temperature ionic liquids: potential windows at mercury electrodes. J. Chem. Eng. Data 54, 2049–2053 (2009)
Abbott, A.P., Frisch, G., Gurman, S.J., Hillman, A.R., Hartley, J., Holyoak, F., Ryder, K.S.: Ionometallurgy: designer redox properties for metal processing. Chem. Commun. 47, 10031–10033 (2011)
Lloyd, D., Vainikka, T., Murtomäki, L., Kontturi, K., Ahlberg, E.: The kinetics of the Cu2+/Cu+ redox couple in deep eutectic solvents. Electrochim. Acta 56, 4942–4948 (2011)
Abbott, A.P., Capper, G., McKenzie, K.J., Ryder, K.S.: Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride. J. Electroanal. Chem. 599, 288–294 (2007)
Pereira, N.M., Fernandes, P.M.V., Pereira, C.M., Silva, A.F.: Electrodeposition of zinc from choline chloride–ethylene glycol deep eutectic solvent: effect of the tartrate ion electrochemical/electroless deposition. J. Electrochem. Soc. 159, D501–D506 (2012)
Whitehead, A.H., Pölzler, M., Gollas, B.: Zinc electrodeposition from a deep eutectic system containing choline chloride and ethylene glycol electrochemical/chemical deposition and etching. J. Electrochem. Soc. 157, D328–D334 (2010)
Hayyan, M., Hashim, M.A., Hayyan, A., Al-Saadi, M.A., Al Nashef, I.M., Mirghani, M.E.S., Saheed, O.K.: Are deep eutectic solvents benign or toxic? Chemosphere 90, 2193–2195 (2013)
Nkuku, C.A., LeSuer, R.J.: Electrochemistry in deep eutectic solvents. J. Phys. Chem. B 111, 13271–13277 (2007)
Shahbaz, K., Mjalli, F.S., Hashim, M.A., AlNashef, I.M.: Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Sep. Purif. Technol. 81, 216–222 (2011)
Beyersdorff, T., Schubert, T.J.S., Biermann, U.W., Pitner, W., Abbott, A.P., McKenzie, K.J., Ryder, K.S.: Deep eutectic solvents. In: Endres, F., Abbott, A.P., MacFarlane, D.R. (eds.) Electrodeposition from Ionic Liquids. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2008)
Zhang, Q., Vigier, K.D.O., Royer, S., Jérôme, F.: Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012)
Nicholson, R.S.: Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 1351–1355 (1965)
Bahadori, L., Chakrabarti, M.H., Mjalli, F.S., AlNashef, I.M., Manan, N.S.A., Hashim, M.A.: Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochim. Acta. 113, 205–211 (2013)
Pratt III, H.D., Leonard, J.C., Steele, L.A.M., Staiger, C.L., Anderson, T.M.: Copper ionic liquids: examining the role of the anion in determining physical and electrochemical properties. Inorg. Chim. Acta 396, 78–83 (2012)
Anderson, T.M., Ingersoll, D., Rose, A.J., Staiger, C.L., Leonard, J.C.: Synthesis of an ionic liquid with an iron coordination cation. Dalton Trans. 39, 8609–8612 (2010)
Acknowledgments
The authors are grateful to the University of Malaya and the Ministry of Higher Education in Malaysia for supporting this collaborative work via the research grants UM.C/HIR/MOHE/ENG/18 and UM.C/HIR/MOHE/ENG/25 as well as the Deanship of Scientific Research at King Saud University through group project No. RGP-VPP-108, which made possible an extended visit of MHC to the University of Southampton and Imperial College London in the UK. The authors are also grateful to the reviewers for providing useful comments that have resulted in a significant enhancement in the quality of this paper.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
10953_2013_111_MOESM1_ESM.doc
Electronic supplementary material The online version of this article (doi:10.1007/s10953-013-) contains supplementary material, which is available to authorized users. (DOC 947 kb)
Rights and permissions
About this article
Cite this article
Chakrabarti, M.H., Brandon, N.P., Mjalli, F.S. et al. Cyclic Voltammetry of Metallic Acetylacetonate Salts in Quaternary Ammonium and Phosphonium Based Deep Eutectic Solvents. J Solution Chem 42, 2329–2341 (2013). https://doi.org/10.1007/s10953-013-0111-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-013-0111-x