Skip to main content

Advertisement

Log in

Cyclic Voltammetry of Metallic Acetylacetonate Salts in Quaternary Ammonium and Phosphonium Based Deep Eutectic Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Seven commercially sourced acetylacetonate salts were investigated in deep eutectic solvents (DESs that were prepared from ethylene glycol and trifluoroacetamide hydrogen bond donors) by cyclic voltammetry, to identify electrolytes suitable for future applications in electrochemical energy storage devices. Although the solubilities are low and on the order of 0.02 mol·L−1 for the most soluble salts, some were found to display encouraging quasi-reversible electrochemical kinetics. For instance, the diffusion coefficients of copper(II) acetylacetonate and iron(III) acetylacetonate in the trifluoroacetamide based DES are 1.14 × 10−8 and 5.12 × 10−9 cm2·s−1, which yields rate constants of 3.16 × 10−3 and 8.43 × 10−6 cm·s−1, respectively. These results are better than those obtained with the DESs prepared from ethylene glycol. The poor kinetics of the iron(III) acetylacetonate system was possibly due to the hygroscopic nature of the DESs that resulted in a continuous build-up of moisture in the system in spite of the maintenance of an inert atmosphere by means of a plastic glove bag. Further work is thus envisaged in an inert dry box that could lead to H-type glass cell charge/discharge experiments in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Schreiber, E., Ziener, U., Manzke, A., Plettl, A., Ziemann, P., Landfester, K.: Preparation of narrowly size distributed metal-containing polymer latexes by miniemulsion and other emulsion techniques: applications for nanolithography. Chem. Mater. 21, 1750–1760 (2009)

    Article  CAS  Google Scholar 

  2. Mahdavian, M., Attar, M.M.: Electrochemical behaviour of some transition metal acetylacetonate complexes as corrosion inhibitors for mild steel. Corros. Sci. 51, 409–414 (2009)

    Article  CAS  Google Scholar 

  3. Dias, M.L., Crossetti, G.L., Bormioli, C., Giarusso, A., de Santa Maria, L.C., Coutinho, F.M.B., Porri, L.: Isospecific polymerization of styrene with supported nickel acetylacetonate/methylaluminoxane catalysts. Polym. Bull. 40, 689–694 (1998)

    Article  CAS  Google Scholar 

  4. Coutinho, F.M.B., Iwamoto, R.K., Costa, M.A.S., de Santa Maria, L.C.: Polymerization of ethylene by chromium acetylacetonate/methylaluminoxane catalyst system. Polym. Bull. 40, 695–700 (1998)

    Article  CAS  Google Scholar 

  5. Koritala, S.: Homogeneous catalytic hydrogenation of soybean oil: palladium acetylacetonate. J. Am. Oil Chem. Soc. 62, 517–520 (1985)

    Article  CAS  Google Scholar 

  6. Tocher, J.H., Fackler Jr, J.P.: Electrochemical investigations of several transition metal tris-(acetylacetonate) complexes. Inorg. Chim. Acta 102, 211–215 (1985)

    Article  CAS  Google Scholar 

  7. Naderi, R., Mahdavian, M., Attar, M.M.: Electrochemical behavior of organic and inorganic complexes of Zn(II) as corrosion inhibitors for mild steel: solution phase study. Electrochim. Acta 54, 6892–6895 (2009)

    Article  CAS  Google Scholar 

  8. Mahdavian, M., Naderi, R.: Corrosion inhibition of mild steel in sodium chloride solution by some zinc complexes. Corros. Sci. 53, 1194–1200 (2011)

    Article  CAS  Google Scholar 

  9. Migowski, P., Dupont, J.: Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chem. Eur. J. 13, 32–39 (2006)

    Article  Google Scholar 

  10. Umpierre, A.P., Machado, G., Fecher, G.H., Morais, J., Dupont, J.: Selective hydrogenation of 1,3-butadiene to 1-butene by Pd(0) nanoparticles embedded in imidazolium ionic liquids. Adv. Synth. Catal. 347, 1404–1412 (2005)

    Article  CAS  Google Scholar 

  11. Wang, Y., Yang, H.: Synthesis of CoPt nanorods in ionic liquids. J. Am. Chem. Soc. 127, 5316–5317 (2005)

    Article  CAS  Google Scholar 

  12. Lewandowski, A., Waligora, L., Galinski, M.: Electrochemical behavior of cobaltocene in ionic liquids. J. Solution Chem. 42, 251–262 (2013)

    Article  CAS  Google Scholar 

  13. Dupont, J., Scholten, J.D.: On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem. Soc. Rev. 39, 1780–1804 (2010)

    Article  CAS  Google Scholar 

  14. Abbott, A.P., McKenzie, K.J.: Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys. 8, 4265–4279 (2006)

    Article  CAS  Google Scholar 

  15. Abbott, A.P., Frisch, G., Ryder, K.S.: Metal complexation in ionic liquids. Annu. Rep. Prog. Chem. A 104, 21–45 (2008)

    Article  CAS  Google Scholar 

  16. Aidoudi, F.H., Byrne, P.J., Allan, P.K., Teat, S.J., Lightfoot, P., Morris, R.E.: Ionic liquids and deep eutectic mixtures as new solvents for the synthesis of vanadium fluorides and oxyfluorides. Dalton Trans. 40, 4324–4331 (2011)

    Article  CAS  Google Scholar 

  17. Abbott, A.P., Ttaib, K.E., Ryder, K.S.: Electrodeposition of nickel using eutectic based ionic liquids. Trans. Inst. Met. Finish. 86, 234–240 (2008)

    Article  CAS  Google Scholar 

  18. Dai, M., Song, L., LaBelle, J.T., Vogt, B.D.: Ordered mesoporous carbon composite films containing cobalt oxide and vanadia for electrochemical applications. Chem. Mater. 23, 2869–2878 (2011)

    Article  CAS  Google Scholar 

  19. Armand, M., Tarascon, J.-M.: Building better batteries. Nature 451, 652–657 (2008)

    Article  CAS  Google Scholar 

  20. Portet, C., Taberna, P.L., Simon, P., Flahaut, E., Robert, C.L.: High power density electrodes for carbon supercapacitor applications. Electrochim. Acta 50, 4174–4181 (2005)

    Article  CAS  Google Scholar 

  21. Sleightholme, A.E.S., Shinkle, A.A., Liu, Q., Li, Y., Monroe, C.W., Thompson, L.T.: Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries. J. Power Source 196, 5742–5745 (2011)

    Article  CAS  Google Scholar 

  22. Chakrabarti, M.H., Roberts, E.P.L., Bae, C., Saleem, M.: Ruthenium based redox flow battery for solar energy storage. Energy Convers. Manage. 52, 2501–2508 (2011)

    Article  CAS  Google Scholar 

  23. Liu, Q., Shinkle, A.A., Li, Y., Monroe, C.W., Thompson, L.T., Sleightholme, A.E.S.: Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries. Electrochem. Commun. 12, 1634–1637 (2010)

    Article  CAS  Google Scholar 

  24. Chakrabarti, M.H., Dryfe, R.A.W., Roberts, E.P.L.: Organic electrolytes for redox flow batteries. J. Chem. Soc. Pak. 29, 294–300 (2007)

    CAS  Google Scholar 

  25. Liu, Q., Sleightholme, A.E.S., Shinkle, A.A., Li, Y., Thompson, L.T.: Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries. Electrochem. Commun. 11, 2312–2315 (2009)

    Article  CAS  Google Scholar 

  26. Chakrabarti, M.H., Dryfe, R.A.W., Roberts, E.P.L.: Evaluation of electrolytes for redox flow battery applications. Electrochim. Acta 52, 2189–2195 (2007)

    Article  CAS  Google Scholar 

  27. Chakrabarti, M.H., Roberts, E.P.L., Saleem, M.: Charge/discharge performance of a novel undivided redox flow battery for renewable energy storage. Int. J. Green Energy 7, 445–460 (2010)

    Article  CAS  Google Scholar 

  28. Bae, C., Chakrabarti, H., Roberts, E.: A membrane free electrochemical cell using porous flow-through graphite felt electrodes. J. Appl. Electrochem. 38, 637–644 (2008)

    Article  CAS  Google Scholar 

  29. Chakrabarti, M.H., Roberts, E.P.L.: Electrochemical separation of ferro/ferricyanide using a membrane free redox flow cell. NED Univ. J. Res. 5, 43–59 (2008)

    Google Scholar 

  30. Leung, P., Li, X., Ponce de León, C., Berlouis, L., Low, C.T.J., Walsh, F.C.: Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2, 10125–10156 (2012)

    Article  CAS  Google Scholar 

  31. Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S., Saleem, M., Mustafa, I.: Redox flow battery for energy storage. Arab. J. Sci. Eng. 38, 723–739 (2012)

    Article  Google Scholar 

  32. Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2001)

    Google Scholar 

  33. Bahadori, L., Manan, N.S.A., Chakrabarti, M.H., Hashim, M.A., Mjalli, F.S., Al Nashef, I.M., Hussain, M.A., Low, C.T.J.: The electrochemical behaviour of ferrocene in deep eutectic solvents based on quaternary ammonium and phosphonium salts. Phys. Chem. Chem. Phys. 15, 1707–1714 (2013)

    Article  CAS  Google Scholar 

  34. Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K.: Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142–9147 (2004)

    Article  CAS  Google Scholar 

  35. Chakrabarti, M.H., Brandon, N.P., Hashim, M.A., Mjalli, F.S., AlNashef, I.M., Bahadori, L., Abdul Manan, N.S., Hussain, M.A., Yufit, V.: Cyclic voltammetry of iron (III) Acetylacetonate in quaternary ammonium and phosphonium based deep eutectic solvents. Int. J. Electrochem. Sci. 8, 9652–9676 (2013)

    CAS  Google Scholar 

  36. Tsierkezos, N.G.: Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. J. Solution Chem. 36, 289–302 (2007)

    Article  CAS  Google Scholar 

  37. Hayyan, M., Mjalli, F.S., Hashim, M.A., Al Nashef, I.M., Mei, T.X.: Investigating the electrochemical windows of ionic liquids. J. Ind. Eng. Chem. 19, 106–112 (2013)

    Article  CAS  Google Scholar 

  38. Sun, J., Forsyth, M., MacFarlane, D.R.: Room-temperature molten salts based on the quaternary ammonium ion. J. Phys. Chem. B 102, 8858–8864 (1998)

    Article  CAS  Google Scholar 

  39. Rogers, E.I., Ljukic, B.S., Hardacre, C., Compton, R.G.: Electrochemistry in room-temperature ionic liquids: potential windows at mercury electrodes. J. Chem. Eng. Data 54, 2049–2053 (2009)

    Article  CAS  Google Scholar 

  40. Abbott, A.P., Frisch, G., Gurman, S.J., Hillman, A.R., Hartley, J., Holyoak, F., Ryder, K.S.: Ionometallurgy: designer redox properties for metal processing. Chem. Commun. 47, 10031–10033 (2011)

    Article  CAS  Google Scholar 

  41. Lloyd, D., Vainikka, T., Murtomäki, L., Kontturi, K., Ahlberg, E.: The kinetics of the Cu2+/Cu+ redox couple in deep eutectic solvents. Electrochim. Acta 56, 4942–4948 (2011)

    Article  CAS  Google Scholar 

  42. Abbott, A.P., Capper, G., McKenzie, K.J., Ryder, K.S.: Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride. J. Electroanal. Chem. 599, 288–294 (2007)

    Article  CAS  Google Scholar 

  43. Pereira, N.M., Fernandes, P.M.V., Pereira, C.M., Silva, A.F.: Electrodeposition of zinc from choline chloride–ethylene glycol deep eutectic solvent: effect of the tartrate ion electrochemical/electroless deposition. J. Electrochem. Soc. 159, D501–D506 (2012)

    Article  CAS  Google Scholar 

  44. Whitehead, A.H., Pölzler, M., Gollas, B.: Zinc electrodeposition from a deep eutectic system containing choline chloride and ethylene glycol electrochemical/chemical deposition and etching. J. Electrochem. Soc. 157, D328–D334 (2010)

    Article  CAS  Google Scholar 

  45. Hayyan, M., Hashim, M.A., Hayyan, A., Al-Saadi, M.A., Al Nashef, I.M., Mirghani, M.E.S., Saheed, O.K.: Are deep eutectic solvents benign or toxic? Chemosphere 90, 2193–2195 (2013)

    Article  CAS  Google Scholar 

  46. Nkuku, C.A., LeSuer, R.J.: Electrochemistry in deep eutectic solvents. J. Phys. Chem. B 111, 13271–13277 (2007)

    Article  CAS  Google Scholar 

  47. Shahbaz, K., Mjalli, F.S., Hashim, M.A., AlNashef, I.M.: Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Sep. Purif. Technol. 81, 216–222 (2011)

    Article  CAS  Google Scholar 

  48. Beyersdorff, T., Schubert, T.J.S., Biermann, U.W., Pitner, W., Abbott, A.P., McKenzie, K.J., Ryder, K.S.: Deep eutectic solvents. In: Endres, F., Abbott, A.P., MacFarlane, D.R. (eds.) Electrodeposition from Ionic Liquids. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2008)

    Google Scholar 

  49. Zhang, Q., Vigier, K.D.O., Royer, S., Jérôme, F.: Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012)

    Article  CAS  Google Scholar 

  50. Nicholson, R.S.: Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 1351–1355 (1965)

    Article  CAS  Google Scholar 

  51. Bahadori, L., Chakrabarti, M.H., Mjalli, F.S., AlNashef, I.M., Manan, N.S.A., Hashim, M.A.: Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochim. Acta. 113, 205–211 (2013)

    Article  Google Scholar 

  52. Pratt III, H.D., Leonard, J.C., Steele, L.A.M., Staiger, C.L., Anderson, T.M.: Copper ionic liquids: examining the role of the anion in determining physical and electrochemical properties. Inorg. Chim. Acta 396, 78–83 (2012)

    Article  Google Scholar 

  53. Anderson, T.M., Ingersoll, D., Rose, A.J., Staiger, C.L., Leonard, J.C.: Synthesis of an ionic liquid with an iron coordination cation. Dalton Trans. 39, 8609–8612 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of Malaya and the Ministry of Higher Education in Malaysia for supporting this collaborative work via the research grants UM.C/HIR/MOHE/ENG/18 and UM.C/HIR/MOHE/ENG/25 as well as the Deanship of Scientific Research at King Saud University through group project No. RGP-VPP-108, which made possible an extended visit of MHC to the University of Southampton and Imperial College London in the UK. The authors are also grateful to the reviewers for providing useful comments that have resulted in a significant enhancement in the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Harun Chakrabarti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10953_2013_111_MOESM1_ESM.doc

Electronic supplementary material The online version of this article (doi:10.1007/s10953-013-) contains supplementary material, which is available to authorized users. (DOC 947 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, M.H., Brandon, N.P., Mjalli, F.S. et al. Cyclic Voltammetry of Metallic Acetylacetonate Salts in Quaternary Ammonium and Phosphonium Based Deep Eutectic Solvents. J Solution Chem 42, 2329–2341 (2013). https://doi.org/10.1007/s10953-013-0111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0111-x

Keywords

Navigation