Skip to main content
Log in

Spectroscopic and Solution Studies of Some Transition Metal Complexes of New 4-Hydroxy Coumarin Semi- and Thiosemicarbazone Complexes

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Two new ligands, 4-hydroxy coumarin-3-thiosemicarbazone (H2L1) and 4-hydroxy coumarin-3-semicarbazone (H2L2) were synthesized and used for the preparation of a series of transition metal complexes (Cr3+, Co2+, Ni2+, Cu2+, and Fe3+), derived from these ligands. These complexes have the forms [ML1Cl2nX (15) and [ML2Cl]·nX (69) (X = H2O or ethanol). The structures of these complexes were elucidated by elemental analyses, IR, UV–Vis, and electrical conductivity, as well as magnetic susceptibility measurements and thermal analyses. IR spectral data indicates that in all complexes, the ligands act as monobasic tridentate, coordinated through keto oxygen or sulfur, azomethine nitrogen and deprotonated phenolic oxygen atom. On the basis of other physicochemical investigations, tetrahedral or square planar geometries are assigned for Cu2+ complexes in monomeric structures. In the case of the Co2+, Ni2+ and Fe3+ complexes, octahedral stereochemistries in monomeric structures are suggested. The dissociation constants of the ligands and the stability constants of their Cu(II), Co(II), Ni(II), and Fe(III) complexes have been also determined using potentiometric pH-metric titration in mixed solvents of dioxane: H2O and DMF: H2O with different ratios and different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mishra, D., Naskar, S., Drew, M.G.B., Chattopadhyay, S.: Synthesis, spectroscopic and redox properties of some ruthenium(II) thiosemicarbazone complexes: structural description of four of these complexes. Inorg. Chim. Acta 359, 585–592 (2006)

    Article  CAS  Google Scholar 

  2. Casas, J.S., Garcia-Tasende, M.S., Sordo, J.: Corrigendum to main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord. Chem. Rev. 209, 197–261 (2000)

    Article  CAS  Google Scholar 

  3. Padhye, S., Kauffman, G.F.: Transition metal complexes of semicarbazones and thiosemicarbazones. Coord. Chem. Rev. 63, 127–160 (1985)

    Article  CAS  Google Scholar 

  4. Lobana, T.S., Rekha, R., Butcher, R.J., Castineiras, A., Bermejo, E., Bharatam, P.V.: Bonding trends of thiosemicarbazones in mononuclear and dinuclear copper(I) complexes: syntheses, structures, and theoretical aspects. Inorg. Chem. 45, 1535–1542 (2006)

    Article  CAS  Google Scholar 

  5. West, D.X., Billeh, I.S., Jasinski, J.P., Jasinski, J.M., Butcher, R.J.: Complexes of N(4)-cyclohexylsemicarbazones and N(4)-cyclohexylthiosemicarbazones derived from 2-formyl-, 2-acetyl- and 2-benzoylpyridine. Trans. Metal Chem. 23, 209–214 (1998)

    Article  CAS  Google Scholar 

  6. Kaminsky, W., Jasinski, J.P., Noudenberg, R., Goldberg, K.I., West, D.X.: Structural study of two N(4)-substituted thiosemicarbazones prepared from 1-phenyl-1,2-propanedione-2- oxime and their binuclear nickel(II) complexes. J. Mol. Struct. 608, 135–141 (2002)

    Article  CAS  Google Scholar 

  7. Baldini, M., Ferrari, M.B., Bisceglie, F., Pelosi, G., Pinelli, S., Tarasconi, P.: Cu(II) complexes with heterocyclic substituted thiosemicarbazone: the case of 5-formyluracil. Synthesis, characterization, X-ray. Inorg. Chem. 42, 2049–2055 (2003)

    Article  CAS  Google Scholar 

  8. Demertzi, D.K., Domopoulou, A., Demertzis, M.A., Valle, G., Papageorgion, A.: Palladium(II) complexes of 2-acetylpyridine N(4)-methyl, N(4)-ethyl and N(4)-phenyl-thiosemicarbazone. Crystal structure of chloro(2-acetylpyridine N(4)-methylthiosemicarbazonato) palladium(II). Synthesis, spectral studies, in vitro and in vivo antitumour activity. Inorg. Biochem. 68, 147–155 (1997)

    Article  Google Scholar 

  9. Garciatojal, J., Pizarro, J.L., Garcia-Orad, A., Peraz-Sanz, A.R., Ugalde, M., Alvarez Diaz, A., Serra, J.L., Arriortua, M.L., Rojo, T.: Biological activity of complexes derived from thiophene-2-carbaldehyde thiosemicarbazone. Crystal structure of [Ni(C6H6N3S2)2]. Inorg. Biochem. 86, 627–633 (2001)

    Article  CAS  Google Scholar 

  10. Patole, J., Padhye, S., Padhye, S., Newton, C.J., Anson, C.E., Powell, A.K.: Synthesis, characterization and in vitro anticancer activities of semicarbazone and thiosemicarbazone derivatives of salicylaldehyde and their copper complexes against human breast cancer cell line MCF-7. Ind. J. Chem. Sect. A 43, 1654–1658 (2004)

    Google Scholar 

  11. Padhye, S., Afrasiabi, Z., Sinn, E., Fok, J., Mehto, F., Rath, N., Deobagakar, D., Anson, C.E., Powell, A.K.: Antitumor metallothiosemicarbazonates: structure and antitumor activity of palladium complex of phenanthrenequinone thiosemicarbazone. Inorg. Chem. 44, 1154–1156 (2005)

    Article  CAS  Google Scholar 

  12. West, D.X., Liberta, A.E., Padhye, S.B., Chikate, R.C., Sonawane, P.B., Kumbhar, A.S., Yerande, R.G.: Thiosemicarbazone complexes of copper(II): structural and biological studies. Coord. Chem. Rev. 123, 49–71 (1993)

    Article  CAS  Google Scholar 

  13. Cowly, A.R., Dilworth, J.R., Donnely, P.S., Labisbal, E., Sousa, A.: An unusual dimeric structure of a Cu(I) bis(thiosemicarbazone) complex: implications for the mechanism of hypoxic selectivity of the Cu(II) derivatives. J. Am. Chem. Soc. 124, 5270–5271 (2002)

    Article  Google Scholar 

  14. Iakovidou, Z., Papageorgiou, A., Demertzis, M.A., Mioglou, E., Mourelatos, D., Kotsis, A., Yadav, P.N., Kovala-Demertzi, D.: Platinum(II) and palladium(II) complexes with 2-acetyl-pyridine thiosemicarbazone: cytogenetic and antineoplastic effects. Anti Cancer Drugs 12, 65–70 (2001)

    Article  CAS  Google Scholar 

  15. Marshalkin, V.N., Kurkovskaya, L.N., Smirnova, T.V.: The phenomenon of ring-chain tautomerism in derivatives of 2-phenyl-(4′-hydroxycoumarinyl-3′)-methylindane-1,3-dione. J. Struct. Chem. 24, 488–489 (1983)

    Article  Google Scholar 

  16. Dempsey, E., O’Sullivan, C., Smyth, M.R., Egan, D., O’Kennedy, R., Wang, J.: Development on an antibody-based amperometric biosensor to study the reaction of 7-hydroxycoumarin with its specific antibody. Analyst 118, 411–413 (1993)

    Article  CAS  Google Scholar 

  17. Traven-Valery, F., Negrebetsky-Vadim, V., Vorobjeva-Larisa, I.: Keto–enol tautomerism, NMR spectra, and H-D exchange of 4-hydroxycoumarins. Can. J. Chem. 75, 377–388 (1997)

    Article  Google Scholar 

  18. Hirata, K., Shimoda, T., Fujino, T., Ohta, S.: Biotransformation of hydroxycoumarins by the cultured cells of Nicotiana tabacum. J. Mol. Catal. B 10, 477–481 (2000)

    Article  CAS  Google Scholar 

  19. Abou-Melha, K.: Octahedral Co(II) and Ni(II) complexes of Schiff bases, semicarbazone and thiosemicarbazone, synthesis, biological, spectral, and thermal studies. J. Coord. Chem. 61, 2053–2067 (2008)

    Article  CAS  Google Scholar 

  20. Agrawal, Y.K.: Correction factor for glass electrode for aqueous dioxane. Talanta 20, 1354–1356 (1973)

    Article  CAS  Google Scholar 

  21. Gonzalez, A.G., Pablos, F.: Evaluation of acidity constants in dioxane–water mixtures by spectrophotometric and potentiometric pH titrations. Anal. Chim. Acta 251, 321–325 (1991)

    Article  CAS  Google Scholar 

  22. Nakamoto, K.: Infrared and Raman spectra of inorganic and coordination compound, 2nd edn. pp. 222–223. Wiley-Interscience, New York (1970)

    Google Scholar 

  23. West, D.X., Pannell, L.K.: Transition metal ion complexes of thiosemicarbazones derived from 2-acetylpyridine N-oxide. II. The 4N-dimethyl derivative. Transit. Met. Chem. 14, 457–462 (1989)

    Article  CAS  Google Scholar 

  24. West, D.X., Kozub, N.M., Bain, G.A.: Copper(II) complexes of 2-formyl-,2-acetyl- and 2-benzoylpyridine N(4)-o-, N(4)-m-, N(4)-p-chlorophenylthiosemicarbazones. Transit. Met. Chem. 21, 52–57 (1996)

    CAS  Google Scholar 

  25. Earnshaw, A.: Introduction to Magnetochemistry. Academic Press, London (1968)

    Google Scholar 

  26. Irving, H., Griffiths, J.M.M.: The stabilities of complexes formed by some bivalent transition metals with N-alkyl-substituted ethylenediamines. J. Chem. Soc. 213–223 (1954)

  27. Irving, H., Williams, R.J.P.: The stability of transition metal complexes. J. Chem. Soc. 75, 3192–3210 (1953)

    Article  Google Scholar 

  28. Millar, K.B., Tan, T., Aller, D.W.: Coordination Chemistry: Experimental Methods. Butterworths, London (1973)

    Google Scholar 

  29. Inczedy, J.: Analytical Applications of Complex Equilibria. Ellis Horwood Ltd., Wiley, New York (1976)

    Google Scholar 

  30. Fabbrizzi, L., Perotti, A., Poggi, A.: The deprotonated amido vs. the amino group in the stabilization of coordinated trivalent copper and nickel cations. An electrochemical evaluation. Inorg. Chem. 22, 1411–1412 (1983)

    Article  CAS  Google Scholar 

  31. Kimura, E., Koike, T., Machida, R., Nagai, R., Kodama, M.: Effects of imide anions and axial donors on the stability and oxidation behavior of square-planar 13–15-membered macrocyclic tetraamine complexes of nickel(II) and copper(II). Inorg. Chem. 23, 4181–4188 (1984)

    Article  CAS  Google Scholar 

  32. Fabbrizzi, L., Kaden, T.A., Perotti, A., Seghi, B., Siegfried, L.: Complexation of divalent and trivalent nickel and copper ions by rigid and flexible dioxo tetraaza macrocycles. Inorg. Chem. 25, 321–327 (1986)

    Article  CAS  Google Scholar 

  33. Fabbrizzi, L., Licchelli, M., Pallavicini, P., Perotti, A., Sacchi, D.: An anthracene-based fluorescent sensor for transition metal ions. Angew. Chem. Ed. Engl. 33, 1975–1977 (1994)

    Article  Google Scholar 

  34. Amendola, V., Brusoni, C., Fabbrizzi, L., Mangano, C., Miller, H., Pallavicini, P., Perotti, A., Taglietti, A.: Molecular rearrangements controlled by pH-driven Cu2+ motions. Chem. Soc. Dalton Trans. 3528–3533 (2001)

  35. Amendola, V., Fabbrizzi, L., Mangana, C., Pallavicini, P.: Molecular machines based on metal ion translocation. Acc. Chem. Res. 34, 488–493 (2001)

    Article  CAS  Google Scholar 

  36. Tweedy, B.G.: Possible mechanism for reduction of elemental sulfur by Monolina fructicola. Phytopathology 55, 910–914 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aisha I. Mosa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 927 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosa, A.I., Ibrahim, M.M. & Aldhlmani, S.A. Spectroscopic and Solution Studies of Some Transition Metal Complexes of New 4-Hydroxy Coumarin Semi- and Thiosemicarbazone Complexes. J Solution Chem 42, 2364–2383 (2013). https://doi.org/10.1007/s10953-013-0108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0108-5

Keywords

Navigation