Skip to main content
Log in

Ion Transfer of Aromatic Amines on the Water/1,2-Dichloroethane Interface: Theoretical Study

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Ten aromatic amines were calculated by Hartree–Fock and Densty Functional Theory using the functional B3LYP and the 6-311++G** basis set in water and 1,2-dichloroethane (1,2-DCE) solvents using the polarized continuum model to simulate the transfer of these aromatic amines between the interface water/1,2-DCE. Actually, electrochemical studies have led to four models to describe the molecule transfer mechanism; however, these mechanisms are not easy to study experimentally. Five models were explored, including the four classic models of molecule transfers and a statistical combination of two of them, called the bi-transfer model. This last model takes structural characteristics of amines at optimized geometry in both solvents, which permits establishment of the electronic energy as a parameter at equilibrium. Finally, we consider that the molecule transfer should include both the neutral and charged amines by using neutral and charged water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vanysek, P.: Analytical applications of electrified interfaces between two immiscible solutions. Trends Anal. Chem. 12, 363–373 (1993)

    Article  Google Scholar 

  2. Volkov, A.G., Deamer, D.W.: Liquid–Liquid Interfaces. Theory and Methods. CRC, Boca Raton (1996)

    Google Scholar 

  3. Girault, H.H.: In: White, R.E., Conway, B.E. (eds.) Modern Aspects of Electrochemistry, vol. 25, pp. 1–62. Plenum Press, New York (1993)

  4. Samec, Z., Kakiuchi, T.: In: Gerischer, H., Tobias, C.W. (eds.) Advances in Electrochemical Science and Electrochemical Engineering, vol. 4, p. 297. VCH, New York (1995)

  5. Benjamin, I.: Molecular structure and dynamics at liquid–liquid interfaces. Annu. Rev. Phys. Chem. 48, 407–451 (1997)

    Article  CAS  Google Scholar 

  6. Schilz, F.: Annual Reports on the Progress of Chemistry. Royal Society of Chemistry, London (2006)

    Google Scholar 

  7. Reymond, F., Fermin, D., Lee, H.J., Girault, H.H.: Electrochemistry at liquid/liquid interfaces: methodology and potential applications. Electrochim. Acta 45, 2647–2662 (2000)

    Article  CAS  Google Scholar 

  8. Sabela, A., Marecek, V., Koryta, J., Samec, Z.: Mechanism of the facilitated ion transference across liquid/liquid interface. Collect. Czech. Chem. Commun. 59, 1287–1295 (1994)

    Article  CAS  Google Scholar 

  9. Homolka, D., Marecek, V., Samec, Z., Base, K., Wendt, H.: The partition of amines between water and an organic solvent phase. J. Electroanal. Chem. 163, 159–170 (1984)

    Article  CAS  Google Scholar 

  10. Bouchard, G., Galland, A., Carrupt, P.A., Gulaboski, R., Mirceski, V., Scholz, F., Girault, H.H.: Standard partition of anionic drugs in the n-octano/water system determined by voltammetry at three-phase electrodes. Phys. Chem. Chem. Phys. 5, 3748–3751 (2003)

    Article  CAS  Google Scholar 

  11. Gobry, V., Ulmeanu, S., Reymond, F., Bouchard, G., Carrupt, P.A., Testa, B., Girault, H.H.: Generalization of ionic partition diagrams to lipophilic compounds and to biphasic systems with variable phase volume ratios. J. Am. Chem. Soc. 123, 10684–10690 (2001)

    Article  CAS  Google Scholar 

  12. Reymond, F., Courtois, V.C., Steayaert, G., Bouchard, G., Carrupt, P.A., Testa, B., Girault, H.H.: Ionic partition diagrams of ionisable drugs: pH-lipophilicity profiles, transfer mechanism and charge effects on solvation. J. Electroanal. Chem. 462, 235–250 (1999)

    Article  CAS  Google Scholar 

  13. Collins, C.J., Berduque, A., Arrigan, D.W.: Electrochemically modulated liquid–liquid extraction of ionized drugs under physiological conditions. Anal. Chem. 80, 8102–8108 (2008)

    Article  CAS  Google Scholar 

  14. Velázquez-Manzanares, M.: Ph.D. thesis, Department of Chemistry, The University of Liverpool (1999)

  15. Laha, S., Luthy, R.G.: Oxidation of aniline and other primary aromatic amines by manganese dioxide. Environ. Sci. Technol. 24, 363–373 (1990)

    Article  CAS  Google Scholar 

  16. Muller, L., Fattore, E., Benfenati, E.: Determination of aromatic amines by solid-phase microextraction and gas chromatography–mass spectroscopy in water samples. J. Chromatogr. A 791, 221–230 (1997)

    Article  CAS  Google Scholar 

  17. Corcia, A.D., Constantino, A., Crescenzi, C., Samperi, R.: Quantification of phenylurea herbicides and their free and humic acid-associated metabolites in natural waters. J. Chromatogr. A 852, 465–474 (1999)

    Article  Google Scholar 

  18. Ni, B.-Q., Shan, Y.–.Y., Wang, H.–.J., Liu, W.–.L.: A DFT study on the interaction between sulfolane and aromatic hydrocarbons. J. Solution Chem. 37, 1343–1354 (2008)

    Article  CAS  Google Scholar 

  19. Yu, Y.X.M., He, Y., Gao, G.H., Li, Z.C.: Boiling points for five binary systems of sulfolane with aromatic hydrocarbons at 101.33 kPa. Fluid Phase Equilib. 190, 61–71 (2001)

    Article  CAS  Google Scholar 

  20. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr. J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople,: J.A. Gaussian 03, Revision C.02, Gaussian Inc., Wallingford CT (2004)

  21. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptopic behavior. Phys. Rev. A 38, 3098–3100 (1988)

    Article  CAS  Google Scholar 

  22. Lee, C.T., Yang, W.T., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of electron density. Phys. Rev. B 37, 785–789 (1998)

    Article  Google Scholar 

  23. McLean, A.D., Chandler, G.S.: Contracted Gaussian basis set for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 72, 5639–5649 (1980)

    Article  CAS  Google Scholar 

  24. Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital method. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–655 (1982)

    Article  Google Scholar 

  25. Miertus, S., Scrocco, E., Tomasi, J.: Electrostatic interaction of a solute with a continuum. A direct utilization of Ab initio molecular potential for the prevision of solvent effect. Chem. Phys. 55, 117–129 (1981)

    Article  CAS  Google Scholar 

  26. Miertus, S., Tomasi, J.: Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 65, 239–245 (1982)

    Article  CAS  Google Scholar 

  27. Cossi, M., Barone, V., Cammi, R., Tomasi, J.: Ab initio study of solvated molecules: a new implementation of the polarizable continuum model Chem. Phys. Lett. 255, 327–335 (1996)

    CAS  Google Scholar 

  28. Cossi, M., Barone, V., Robb, M.A.: A direct procedure for the evaluation of solvent effect in MC-SCF calculations. J. Chem. Phys. 111, 5295–5302 (1999)

    Article  CAS  Google Scholar 

  29. Cossi, M., Barone, V.: Solvent effect on vertical electronic transitions by the polarizable continuum model. J. Chem. Phys. 112, 2427–2435 (2000)

    Article  CAS  Google Scholar 

  30. Cossi, M., Barone, V.: Time-dependent density functional theory for molecules in liquid solutions. J. Chem. Phys. 115, 4708–4717 (2001)

    Article  CAS  Google Scholar 

  31. Cossi, M., Rega, N., Scalmani, G., Barone, V.: Polarizable dielectric model of solvation with inclusion of charge penetration effects. J. Chem. Phys. 114, 5691–5701 (2001)

    Article  CAS  Google Scholar 

  32. Cossi, M., Scalmani, G., Rega, N., Barone, V.: New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J. Chem. Phys. 117, 43–54 (2002)

    Article  CAS  Google Scholar 

  33. Tomasi, J., Mennucci, B., Cancès, E.: The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab intio level. J. Mol. Struct. (Theochem) 464, 211–226 (1999)

    Article  CAS  Google Scholar 

  34. Mennucci, B., Cancès, E., Tomasi, J.: Evaluation of solvent effects in isotropic and anisotropic dielectrics and in solutions with a Unified Integral Equation Method: theoretical bases, computation implementation, and numerical approximations. J. Phys. Chem. B 101, 10506–10517 (1997)

    Article  CAS  Google Scholar 

  35. Cammi, R., Mennucci, B., Tomasi, J.: Second-order Moller–Plesset analytical derivatives for the polarizable continuum model using the relaxed density approach. J. Phys. Chem. A 103, 9100–9108 (1999)

    Article  CAS  Google Scholar 

  36. Cammi, R., Mennucci, B., Tomasi, J.: Fast evaluation of geometries and properties of excited molecules in solution: a Tamm–Dancoff model with application to 4-dimethylaminobenzonitrile. J. Phys. Chem. A 104, 5631–5637 (2000)

    Article  CAS  Google Scholar 

  37. Kirkwood, J.G.: Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J. Chem. Phys. 2, 351–361 (1934)

    Article  CAS  Google Scholar 

  38. Onsager, L.: Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486–1493 (1936)

    Article  CAS  Google Scholar 

  39. Cysewski, P., Jelinski, T.: The p-electron delocalization imposed by thermal vibrations of substituted benzene analogues in mediums of varying polarities. Comp. Method Sci. Tech. 17, 5–196 (2011)

    Google Scholar 

  40. Cysewski, P., Szefler, B., Kozlowska, K.: Solvent impact on the aromaticity of benzene analogues: implicit versus explicit solvent approach. J. Mol. Model. 15, 731–738 (2009)

    Article  CAS  Google Scholar 

  41. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Contr. AC-19, 716–723 (1974)

    Article  Google Scholar 

  42. Kubiny, H.: Variable selection in QSAR studies. II. A highly efficient combination of systematic search and evolution. QSAR 13, 393–401 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

The English was kindly reviewed by Miss Dessiree Argott. MVM acknowledges to Consejo Nacional de Ciencia y Tecnología for the economical support to the Project CB-2010/152918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Ramírez-Galicia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Pacheco, H., Velázquez-Manzanares, M. & Ramírez-Galicia, G. Ion Transfer of Aromatic Amines on the Water/1,2-Dichloroethane Interface: Theoretical Study. J Solution Chem 42, 2200–2212 (2013). https://doi.org/10.1007/s10953-013-0102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0102-y

Keywords

Navigation