Skip to main content
Log in

Studies of Size-Based Selectivity in Aqueous Ternary Complexes of Americium(III) or Lanthanide(III) Cations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Spectrophotometric and calorimetric titrations were used to determine the equilibrium constants (log10 K 111) and enthalpies of formation (ΔH 111) for aqueous ternary complexes of the form M(La)(Lb) (M = Nd3+, Sm3+, Tb3+, Ho3+, Er3+, or Am3+; La = DTPA5−, DO3A3−, or CDTA4−; Lb = oxalate (Ox), malonate (Mal), or iminodiacetate (IDA)). Inner-sphere ternary complexes were readily formed with the septadentate DO3A (1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid) and hexadentate CDTA (trans-1,2-diaminocyclohexanetetraacetic acid) ligands, whose binary complexes have residual metal-coordinated water molecules that are readily displaced by the smaller secondary ligands. The stability constants for the formation of lanthanide–CDTA complexes with Ox, Mal, and IDA generally increase with decreasing ionic radius when steric hindrance is minimal, with the trend in the M(CDTA) formation constants overshadowing any size-based reversal in the stepwise ternary complexation constants. Similar ternary complexes with DO3A showed little increase in thermodynamic stability compared to analogous CDTA complexes and no preference for larger Ln cations. The octadentate DTPA (diethylenetriaminepentaacetic acid) ligand proved too large to form ternary complexes to a measurable extent with any of the secondary ligands investigated, despite the presence of one residual inner sphere water molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burai, L., Hietapelto, V., Kiraly, R., Toth, E., Brucher, E.: Stability constants and H-1 NMR relaxation effects of ternary complexes formed between Gd–DTPA, Gd–DTPA–BMA, Gd–DOTA, and Gd–EDTA and citrate, phosphate, and carbonate ions. Magn. Reson. Med. 38, 146–150 (1997)

    Article  CAS  Google Scholar 

  2. Thakur, P., Mathur, J.N., Choppin, G.R.: Complexation thermodynamics and the structure of the binary and ternary complexes of Am(III), Cm(III) and Eu(III) with CDTA and CDTA + IDA. Inorg. Chim. Acta 360, 3688–3698 (2007)

    Article  CAS  Google Scholar 

  3. Thakur, P., Conca, J.L., Choppin, G.R.: Mixed ligand complexes of Am(III), Cm(III), and Eu(III) with HEDTA and HEDTA + IDA—complexation thermodynamics and structural aspects. J. Solution Chem. 41, 599–615 (2012)

    Article  CAS  Google Scholar 

  4. Choppin, G.R., Thakur, P., Mathur, J.N.: Thermodynamics and structure of binary and ternary complexation of Am(III), Cm(III), and Eu(III) with DTPA and DTPA + IDA. C. R. Chim. 10, 916–928 (2007)

    Article  CAS  Google Scholar 

  5. Mathur, J.N., Thakur, P., Dodge, C.J., Francis, A.J., Choppin, G.R.: Coordination modes in the formation of the ternary Am(III), Cm(III) and Eu(III) complexes with EDTA and NTA: TRLFS, C-13 NMR, EXAFS, and thermodynamics of the complexation. Inorg. Chem. 45, 8026–8035 (2006)

    Article  CAS  Google Scholar 

  6. Thakur, P., Conca, J.L., Van De Burgt, L.J., Choppin, G.R.: Complexation and the laser luminescence studies of Eu(III), Am(III), and Cm(III) with EDTA, CDTA, and PDTA and their ternary complexation with dicarboxylates. J. Coord. Chem. 62, 3719–3737 (2009)

    Article  CAS  Google Scholar 

  7. Leggett, C.J., Liu, G., Jensen, M.P.: Do aqueous ternary complexes influence the TALSPEAK Process? Solvent Extr. Ion Exch. 28, 313–334 (2010)

    Article  CAS  Google Scholar 

  8. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976)

    CAS  Google Scholar 

  9. Lis, S., Choppin, G.R.: Luminescence study of europium(III) complexes with several dicarboxylic acids in aqueous solution. J. Alloys Compd. 225, 257–260 (1995)

    Article  CAS  Google Scholar 

  10. Barthelemy, P.P., Choppin, G.R.: Luminescence study of complexation of europium and dicarboxylic acids. Inorg. Chem. 28, 3354–3357 (1989)

    Article  CAS  Google Scholar 

  11. Korbl, J., Pribil, R.: Xylenol orange: new indicator for the EDTA titration. Chem. Anal. 45, 102–103 (1956)

    CAS  Google Scholar 

  12. Matonic, J.H., Scott, B.L., Neu, M.P.: High-yield synthesis and single-crystal X-ray structure of a plutonium(III) aquo complex: [Pu(H2O)9][CF3SO3]3. Inorg. Chem. 40, 2638–2639 (2001)

    Article  CAS  Google Scholar 

  13. Leggett, D.J.: SQUAD: Stability constants from absorbance data. In: Leggett, D.J. (ed.) Computational Methods for the Determination of Formation Constants, Chap. 6. Plenum Press, New York (1985)

    Chapter  Google Scholar 

  14. Smith, R., Martell, A., Motekaitis, R.: NIST Critically Selected Stability Constants of Metal Complexes Database, vol. 8. NIST, Gaithersburg (2004)

    Google Scholar 

  15. Jensen, M.P., Beitz, J.V., Rogers, R.D., Nash, K.L.: Thermodynamics and hydration of the europium complexes of a nitrogen heterocycle methane-1,1-diphosphonic acid. J. Chem. Soc. Dalton Trans. 3058–3064 (2000)

  16. Jensen, M.P., Nash, K.L.: Thermodynamics of dioxoneptunium(V) complexation by dicarboxylic acids. Radiochim. Acta 89, 557–564 (2001)

    Article  CAS  Google Scholar 

  17. Henrie, D.E., Fellows, R.L., Choppin, G.R.: Hypersensitivity in the electronic transitions of lanthanide and actinide compounds. Coord. Chem. Rev. 18, 199–224 (1976)

    Article  CAS  Google Scholar 

  18. Caceci, M.S.: Estimating error limits in parametric curve fitting. Anal. Chem. 61, 2324–2327 (1989)

    Article  CAS  Google Scholar 

  19. Nash, K.L.: A review of the basic chemistry and recent developments in trivalent f-elements separations. Solvent Extr. Ion Exch. 11, 729–768 (1993)

    Article  CAS  Google Scholar 

  20. Iversen, B., Larsen, F.K., Pinkerton, A.A., Martin, A., Darovsky, A., Reynolds, P.A.: Characterization of actinide bonding in Th(S2PMe2)4 by synchrotron X-ray diffraction. Inorg. Chem. 37, 4559–4566 (1998)

    Article  CAS  Google Scholar 

  21. Choppin, G.R.: Comparison of the solution chemistry of the actinides and lanthanides. J. Less Common Met. 93, 323–330 (1983)

    Article  CAS  Google Scholar 

  22. Degischer, G., Choppin, G.R.: Malonate complexing of lanthanide ions. J. Inorg. Nucl. Chem. 34, 2823–2830 (1972)

    Article  CAS  Google Scholar 

  23. Choppin, G.R.: Inner versus outer sphere complexation of f-elements. J. Alloys Compd. 249, 9–13 (1997)

    Article  CAS  Google Scholar 

  24. Kumar, K., Chang, C.A., Tweedle, M.F.: Equilibrium and kinetic studies of lanthanide complexes of macrocyclic polyamino carboxylates. Inorg. Chem. 32, 587–593 (1993)

    Article  CAS  Google Scholar 

  25. Polasek, M., Caravan, P.: Is macrocycle a synonym for kinetic inertness in Gd(III) complexes? Effect of coordinating and noncoordinating substituents on inertness and relaxivity of Gd(III) chelates with DO3A-like ligands. Inorg. Chem. 52, 4084–4096 (2013)

    Article  CAS  Google Scholar 

  26. Brittain, H.G., Choppin, G.R., Barthelemy, P.P.: pH-dependence of the metal ion hydration state in lanthanide complexes of polyaminopolycarboxylate ligands. J. Coord. Chem. 26, 143–153 (1992)

    Article  CAS  Google Scholar 

  27. Mondry, A., Starynowicz, P.: Optical spectroscopy of neodymium(III) complexes with diethylenetriaminepentaacetic acid in solution and in [C(NH2)3]2[Nd(DTPA)(H2O)]·7H2O single crystal. Polyhedron 19, 771–777 (2000)

    Article  CAS  Google Scholar 

  28. Botta, M., Aime, S., Barge, A., Bobba, G., Dickins, R.S., Parker, D., Terreno, E.: Ternary complexes between cationic Gd(III) chelates and anionic metabolites in aqueous solutions: an NMR relaxometric study. Chem. Eur. J. 9, 2102–2109 (2003)

    Article  CAS  Google Scholar 

  29. Kang, S.I., Ranganathan, R.S., Emswiler, J.E., Kumar, K., Gougoutas, J.Z., Malley, M.F., Tweedle, M.F.: Synthesis, characterization, and crystal structure of the gadolinium(III) chelate of (1R,4R,7R)-α,α′,α″-trimethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3MA). Inorg. Chem. 32, 2912–2918 (1993)

    Article  CAS  Google Scholar 

  30. Gurney, R.W.: Ionic Processes in Solution. McGraw-Hill, New York (1953)

    Google Scholar 

  31. Wang, Z.M., Van de Burgt, L.J., Choppin, G.R.: Spectroscopic study of lanthanide(III) complexes with aliphatic dicarboxylic acids. Inorg. Chim. Acta 310, 248–256 (2000)

    Article  CAS  Google Scholar 

  32. Hancock, R.D.: Molecular mechanics calculations and metal ion recognition. Acc. Chem. Res. 23, 253–257 (1990)

    Article  CAS  Google Scholar 

  33. Choppin, G.R., Dadgar, A., Rizkalla, E.N.: Thermodynamics of complexation of lanthanides by dicarboxylate ligands. Inorg. Chem. 25, 3581–3584 (1986)

    Article  Google Scholar 

  34. Geier, G., Karlen, U.: Koordinationszahl von Lanthaniden: Thermodynamik der Ln(III)–EDTA–mischkomplexe mit den anionen der 8-hydroxychinolin-5-sulfonsaure, iminodiessigsaure und nitrilotriessigsaure. Helv. Chim. Acta 54, 135–153 (1971)

    Article  CAS  Google Scholar 

  35. Kiraly, R., Toth, I., Zekany, L., Brucher, E.: Studies on the formation of ternary complexes of the lanthanide (III)-ethylenediaminetetraacetates with oxalate and diglycolate ligands. Acta Chim. Hung. 125, 519–526 (1988)

    CAS  Google Scholar 

  36. Krivonogikh, T.S., Titova, E.S., Pyreu, D.F., Kozlovskii, E.V.: Thermodynamics of mixed-ligand complexation of cerium group lanthanide ethylenediaminetetraacetates. Russ. J. Inorg. Chem. 56, 128–132 (2011)

    Article  CAS  Google Scholar 

  37. Kiraly, R., Toth, I., Brucher, E.: Aminopolycarboxylates of rare earths—VI. Determination of stability constants and formation enthalpies of rare earth(III)–ethylenediamine tetraacetate–fluoride mixed ligand complexes. J. Inorg. Nucl. Chem. 43, 345–349 (1981)

    Article  CAS  Google Scholar 

  38. Terreno, E., Botta, M., Boniforte, P., Bracco, C., Milone, L., Mondino, B., Uggeri, F., Aime, S.: A multinuclear NMR relaxometry study of ternary adducts formed between heptadentate Gd(III) chelates and L-lactate. Chem. Eur. J. 11, 5531–5537 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work supported by the U.S. Department of Energy, Assistant Secretary of the Office of Nuclear Energy, Fuel Cycle Research and Development Program, under contract number DE-AC02-06CH11357. C.J.L. acknowledges support by a U.S. DOE Office of Civilian Radioactive Waste Management Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Jensen.

Additional information

The submitted manuscript has been created by U. Chicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3007 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leggett, C.J., Jensen, M.P. Studies of Size-Based Selectivity in Aqueous Ternary Complexes of Americium(III) or Lanthanide(III) Cations. J Solution Chem 42, 2119–2136 (2013). https://doi.org/10.1007/s10953-013-0098-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0098-3

Keywords

Navigation