Skip to main content
Log in

Theoretical Study of Solvent Effects on the Cis-to-Trans Isomerization of [Pd(C6Cl2F3)I(PH3)2]

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work, the effect of different solvents on the mechanism of the cis-to-trans isomerization of [Pd(C6Cl2F3)(I)(PH3)2] has been investigated theoretically in detail. Using a quantum mechanical approach, different pathways were investigated. A three-pathway mechanism has already been proposed which consists of two PH3-sensitive steps (k 3, k 4) and one PH3-insensitive (k diss) step. Since in the k 3 pathway the solvent has two types of explicit and implicit effects, this path was investigated for both the gas phase and solvent systems (using the PCM model). In this path, solvents with larger donor numbers (necessary condition) and smaller dielectric constant and dipole moment values (sufficient condition) are more appropriate. In the k 4 pathway, the solvent has an implicit effect only, and the smaller are the dielectric constant and dipole moment of a solvent, the more appropriate it is. To find the best solvent, a parameter, called the average activation energy, was defined, which considers the contribution of each path in the mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Littke, A.F., Schwarz, L., Fu, G.C.: Pd/P(t-Bu)3: a mild and general catalyst for Stille reactions of aryl chlorides and aryl bromides. J. Am. Chem. Soc. 24, 6343–6348 (2002)

    Article  Google Scholar 

  2. Miyaura, N.: In Metal-Catalyzed Cross-Coupling Reactions, 2nd edn., Diederich, F., Stang, P.J. (eds.) Wiley-VCH, New York (2004)

  3. Miyaura, N., Suzuki, A.: Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995)

    Article  CAS  Google Scholar 

  4. De Meijere, A., Meyer, F.E.: Fine feathers make fine birds: the Heck reaction in modern garb. Angew. Chem. Int. Ed. Engl. 33, 2379–2411 (1995)

    Article  Google Scholar 

  5. Beletskaya, I.P., Cheprakov, A.V.: Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 100, 3009–3066 (2000)

    Article  CAS  Google Scholar 

  6. Stille, J.K.: The palladium-catalyzed cross coupling reactions of organotin reagents with organic electrophiles. Angew. Chem. Int. Ed. Engl. 25, 508–524 (1986)

    Article  Google Scholar 

  7. Wolfe, J.P., Tomori, H., Sadighi, J.P., Yin, J., Buchwald, S.L.: A simple, efficient catalyst system for the palladium-catalyzed amination of aryl chlorides, bromides, and triflates. J. Org. Chem. 65, 1158–1174 (2000)

    Article  CAS  Google Scholar 

  8. Ehrentraut, A., Zapf, A., Beller, M.: Palladium-catalyzed methoxycarbonylation of 1,3-butadiene. Adv. Synth. Catal. 344, 209–217 (2002)

    Article  CAS  Google Scholar 

  9. Goossen, L.J., Koley, D., Hermann, H.L., Thiel, W.: Mechanistic pathways for oxidative addition of aryl halides to palladium(0) complexes: a DFT study. Organometallics 24, 2398–2410 (2005)

    Article  CAS  Google Scholar 

  10. Casado, A.L., Espinet, P.: On the configuration resulting from oxidative addition of RX to Pd(PPh3)4 and the mechanism of the cis-to-trans isomerization of [PdRX(PPh3)2] complexes (R = aryl, X = halide). Organometallics 17, 954–959 (1998)

    Article  CAS  Google Scholar 

  11. Akbari, A., Hoseinzade, F., Morsali, A., Beyramabadi, S.A.: Quantum mechanical study on the mechanism and kinetics of the cis-to-trans isomerization of [Pd(C6Cl2F3)I(PH3)2]. Inorg. Chim. Acta 394, 423–429 (2013)

    Article  CAS  Google Scholar 

  12. Beyramabadi, S.A., Eshtiagh-Hosseini, H., Housaindokht, M.R., Morsali, A.: Mechanism and kinetics of the Wacker process: a quantum mechanical approach. Organometallics 27, 72–79 (2008)

    Article  CAS  Google Scholar 

  13. Beyramabadi, S.A., Eshtiagh-Hosseini, H., Housaindokht, M.R., Morsali, A.: H-Transfer steps of the Wacker process: a DFT study. THEOCHEM 903, 108–114 (2009)

    Article  CAS  Google Scholar 

  14. Eshtiagh-Hosseini, H., Beyramabadi, S.A., Morsali, A., Housaindokht, M.R.: O–H bond cleavage step of the Wacker process: a DFT study. THEOCHEM 941, 138–143 (2010)

    Article  CAS  Google Scholar 

  15. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  16. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)

    Article  CAS  Google Scholar 

  17. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti conelation energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  18. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT (2009)

  19. Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985)

    Article  CAS  Google Scholar 

  20. Miertus, S., Scrocco, E., Tomasi, J.: Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55, 117–129 (1981)

    Article  CAS  Google Scholar 

  21. Tomasi, J., Persico, M.: Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 94, 2027–2094 (1994)

    Article  CAS  Google Scholar 

  22. Cammi, R., Tomasi, J.: Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J. Comput. Chem. 16, 1449–1458 (1995)

    Article  CAS  Google Scholar 

  23. Gutmann, V.: Empirical approach to molecular interactions. Coord. Chem. Rev. 15, 207–237 (1975)

    Article  CAS  Google Scholar 

  24. Gutmann, V.: Solvent effects on reactivities of organometallic compounds. Coord. Chem. Rev. 18, 225–255 (1976)

    Article  CAS  Google Scholar 

  25. Gutmann, V.: The Donor–Acceptor Approach to Molecular Interactions, p. 279. Plenum, New York (1978)

    Book  Google Scholar 

  26. Gutmann, V.: The extension of the donor–acceptor concept. Pure Appl. Chem. 51, 2197–2210 (1979)

    Article  CAS  Google Scholar 

  27. Kamlet, M.J., Abboud, J.-L.M., Abraham, M.H., Taft, R.W.: Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Akbari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morsali, A., Hoseinzade, F., Akbari, A. et al. Theoretical Study of Solvent Effects on the Cis-to-Trans Isomerization of [Pd(C6Cl2F3)I(PH3)2]. J Solution Chem 42, 1902–1911 (2013). https://doi.org/10.1007/s10953-013-0092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0092-9

Keywords

Navigation