Abstract
A calorimetric study of dissolution of the ionic liquids (ILs) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][NTf2]), 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C6mim][NTf2]), and 1-hexyl-3-methylimidazolium tris(trifluoromethylsulfonyl)methide ([C6mim][CTf3]) into chloroform (CHCl3) is presented with particular focus on [C2mim][NTf2]. The interpretation of the calorimetric data for [C2mim][NTf2] was aided by additional NMR self-diffusion measurements and viscosity measurements that through the Stokes–Einstein equation provided information about the average size of the species present. It is evident that the main equilibrium species are ion pairs and aggregates. An estimate for the enthalpy contribution from aggregate formation for [C2mim][NTf2] was found to be −2.09 kJ per mol of added IL at 288.2 K and slightly decreasing in magnitude to −1.11 kJ·mol−1 at 318.2 K. While all three ILs release heat upon dissolution into CHCl3, different temperature trends are observed demonstrating the fine balance of competing contributions from breaking IL interactions, cavity formation for the solutes to reside in, and the establishment of new solute–solvent interactions.
Similar content being viewed by others
References
Abbott, A.P., Ryder, K.S., Konig, U.: Electrofinishing of metals using eutectic based ionic liquids. Trans. Inst. Met. Finish. 86, 196–204 (2008)
MacFarlane, D.R., Pringle, J.M., Howlett, P.C., Forsyth, M.: Ionic liquids and reactions at the electrochemical interface. Phys. Chem. Chem. Phys. 12, 1659–1669 (2010)
Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)
Endres, F., Abbott, A.P., MacFarlane, D.: Future directions and challenges. In: Endres, F., MacFarlane, D.R., Abbott, A.P. (eds.) Electrodeposition from Ionic Liquids, pp. 369–377. Wiley-VCH, Weinheim (2008)
Liu, H., Liu, Y., Li, J.: Ionic liquids in surface electrochemistry. Phys. Chem. Chem. Phys. 12, 1685–1697 (2010)
Chaturvedi, D.: Ionic liquids, a class of versatile green reaction media for the syntheses of nitrogen heterocycles. Curr. Org. Synth. 8, 438–471 (2011)
Koel, M.: Future prospects. In: Koel, M. (ed.) Ionic Liquids in Chemical Analysis, pp. 397–399. CRC Press, Boca Raton, FL (2009)
Moniruzzaman, M., Nakashima, K., Kamiya, N., Goto, M.: Recent advances of enzymatic reactions in ionic liquids. Biochem. Eng. J. 48, 295–314 (2010)
Stark, A., Ajam, M., Green, M., Rabenheimer, H.G., Ranwell, A., Ondruschka, B.: Metathesis of 1-octene in ionic liquids and other solvents: effects of substrate solubility, solvent polarity and impurities. Adv. Synth. Catal. 348, 1934–1941 (2006)
Palomar, J., Ferro, V.R., Gilarranz, M.A., Rodriguez, J.J.: Computational approach to nuclear magnetic resonance in 1-alkyl-3-methylimidazolium ionic liquids. J. Phys. Chem. B 111, 168–180 (2007)
Hu, X., Lin, Q., Gao, J., Wu, Y., Zhang, Z.: Anion-cation and ion-solvent interaction of some typical ionic liquids in solvents with different dielectric constant. Chem. Phys. Lett. 516, 35–39 (2011)
Katsuta, S., Yamaguchi, N., Ogawa, R., Kudo, Y., Takeda, Y.: Distribution of 1-alkyl-3-methylimidazolium ions and their ion pairs between dichloromethane and water. Anal. Sci. 24, 1261–1267 (2008)
Wang, H., Wang, J., Zhang, S., Pei, Y., Zhuo, K.: Ionic association of the ionic liquids [C4mim][BF4], [C4mim][PF6], and [C n mim]Br in molecular solvents. ChemPhysChem 10, 2516–2523 (2009)
Katsuta, S., Imai, K., Kudo, Y., Takeda, Y., Seki, H., Nakakoshi, M.: Ion pair formation of alkylimidazolium ionic liquids in dichloromethane. J. Chem. Eng. Data 53, 1528–1532 (2008)
Tubbs, J.D., Hoffmann, M.M.: Ion-pair formation of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifyl)imide in low dielectric media. J. Solution Chem. 33, 381–394 (2004)
Koeddermann, T., Ludwig, R., Paschek, D.: On the validity of Stokes–Einstein and Stokes–Einstein–Debye relations in ionic liquids and ionic-liquid mixtures. ChemPhysChem 9, 1851–1858 (2008)
Koeddermann, T., Wertz, C., Heintz, A., Ludwig, R.: Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration. ChemPhysChem 7, 1944–1949 (2006)
Dupont, J.: From molten salts to ionic liquids: a “nano” journey. Acc. Chem. Res. 44, 1223–1231 (2011)
Leclercq, L., Schmitzer, A.R.: Supramolecular effects involving the incorporation of guest substrates in imidazolium ionic liquid networks: recent advances and future developments. Supramol. Chem. 21, 245–263 (2009)
H. Weingärtner: Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew. Chem. Int. Ed. 47, 654–670 (2008)
Stark, A., Zidell, A.W., Hoffmann, M.M.: Is the ionic liquid 1-ethyl-3-methylimidazolium methanesulfonate [EMIM][MeSO3] capable of rigidly binding water? J. Mol. Liq. 160, 166–179 (2011)
Stark, A., Zidell, A.W., Russo, J.W., Hoffmann, M.M.: Composition dependent physicochemical property data for the binary system water and the ionic liquid 1-butyl-3-methylimidazolium methanesulfonate ([C4mim][MeSO3]). J. Chem. Eng. Data 57, 3330–3339 (2012)
Hunger, J., Stoppa, A., Buchner, R., Hefter, G.: Dipole correlations in the ionic liquid 1-N-ethyl-3-N-methylimidazolium ethylsulfate and its binary mixtures with dichloromethane. J. Phys. Chem. B 113, 9527–9537 (2009)
Stoppa, A., Hunger, J., Hefter, G., Buchner, R.: Structure and dynamics of 1-N-alkyl-3-N-methylimidazolium tetrafluoroborate + acetonitrile mixtures. J. Phys. Chem. B 116, 7509–7521 (2012)
Li, B., Wang, Y., Wang, X., Vdovic, S., Guo, Q., Xia, A.: Spectroscopic evidence for unusual microviscosity in imidazolium ionic liquid and tetraethylene glycol dimethyl ether cosolvent mixtures. J. Phys. Chem. B 116, 13272–13281 (2012)
Del Popolo, M.G., Mullan, C.L., Holbrey, J.D., Hardacre, C., Ballone, P.: Ion association in [bmim][PF6]/naphthalene mixtures: an experimental and computational study. J. Am. Chem. Soc. 130, 7032–7041 (2008)
Bayley, P.M., Best, A.S., MacFarlane, D.R., Forsyth, M.: Transport properties and phase behaviour in binary and ternary ionic liquid electrolyte systems of interest in lithium batteries. ChemPhysChem 12, 823–827 (2011)
Bayley, P.M., Lane, G.H., Rocher, N.M., Clare, B.R., Best, A.S., MacFarlane, D.R., Forsyth, M.: Transport properties of ionic liquid electrolytes with organic diluents. Phys. Chem. Chem. Phys. 11, 7202–7208 (2009)
Comminges, C., Barhdadi, R., Laurent, M., Troupel, M.: Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: ionic liquids + molecular solvents. J. Chem. Eng. Data 51, 680–685 (2006)
Khupse, N.D., Kumar, A.: Dramatic change in viscosities of pure ionic liquids upon addition of molecular solvents. J. Solution Chem. 38, 589–600 (2009)
Khupse, N.D., Kumar, A.: Solvent-induced viscosity changes in ionic liquids—a review. Proc. Natl. Acad. Sci. India Sect. A 80, 1–12 (2010)
Bester-Rogac, M., Hunger, J., Stoppa, A., Buchner, R.: 1-Ethyl-3-methylimidazolium ethylsulfate in water, acetonitrile, and dichloromethane: molar conductivities and association constants. J. Chem. Eng. Data 56, 1261–1267 (2011)
Chaban, V.V., Voroshylova, I.V., Kalugin, O.N., Prezhdo, O.V.: Acetonitrile boosts conductivity of imidazolium ionic liquids. J. Phys. Chem. B 116, 7719–7727 (2012)
CRC: Handbook of Chemistry and Physics. CRC, Boca Raton (2001)
Wang, J., Tian, Y., Zhao, Y., Zhuo, K.: A volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2-butanone and N,N-dimethylformamide. Green Chem. 5, 618–622 (2003)
Wang, J., Zhu, A., Zhao, Y., Zhuo, K.: Excess molar volumes and excess logarithm viscosities for binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium hexaflurophosphate with some organic compounds. J. Solution Chem. 34, 585–596 (2005)
Xu, Y., Yao, J., Wang, C., Li, H.: Density, viscosity, and refractive index properties for the binary mixtures of n-butylammonium acetate ionic liquid + alkanols at several temperatures. J. Chem. Eng. Data 57, 298–308 (2012)
Shao, D., Lu, X., Fang, W., Guo, Y., Xu, L.: Densities and viscosities for binary mixtures of the ionic liquid N-ethyl piperazinium propionat with n-alcohols at several temperatures. J. Chem. Eng. Data 57, 937–942 (2012)
Fan, W., Zhou, Q., Sun, J., Zhang, S.: Density, excess molar volume, and viscosity for the methyl methacrylate + 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid binary system at atmospheric pressure. J. Chem. Eng. Data 54, 2307–2311 (2009)
Li, Y., Ye, H., Zeng, P., Qi, F.: Volumetric properties of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate with aniline. J. Solution Chem. 39, 219–230 (2010)
Gao, H., Qi, F., Wang, H.: Densities and volumetric properties of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate with benzaldehyde at T = (298.15 to 313.15) K. J. Chem. Thermodyn. 41, 888–892 (2009)
Zhong, Y., Wang, H., Diao, K.: Densities and excess volumes of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate with aromatic compound at T = (298.15 to 313.15 K). J. Chem. Thermodyn. 39, 291–296 (2007)
Qi, F., Wang, H.: Application of Prigogine–Flory–Patterson theory to excess molar volume of mixtures of 1-butyl-3-methylimidazolium ionic liquids with N-methyl-2-pyrrolidinone. J. Chem. Thermodyn. 41, 265–272 (2009)
Gao, H., Yu, Z., Wang, H.: Densities and volumetric properties of binary mixtures of amino acid ionic liquid [bmim][Glu] or [bmim][Gly] with benzylalcohol at T = (298.15 to 313.15 K). J. Chem. Thermodyn. 42, 640–645 (2010)
Gonzalez, E.J., Dominguez, A., Macedo, E.A.: Excess properties of binary mixtures containing 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid and polar organic compounds. J. Chem. Thermodyn. 47, 300–311 (2012)
Deng, Y., Husson, P., Jacquemin, J., Youngs, T.G.A., Kett, V.L., Hardacre, C., Costa Gomes, M.F.: Volumetric properties and enthalpies of solution of alcohols CkH2k+1OH (k = 1, 2, 6) in 1-methyl-3-alkylimidazolium bis(trifluoromethylsulfonyl)imide [C1CnIm][NTf2] n = 2, 4, 6, 8, 10 ionic liquids. J. Chem. Thermodyn. 43, 1708–1718 (2011)
Heintz, A., Klasen, D., Lehmann, J.K., Wertz, C.: Excess molar volumes and liquid–liquid equilibria of the ionic liquid 1-methyl-3-octyl-Imidazolium tetrafluoroborate mixed with butan-1-ol and pentan-1-ol. J. Solution Chem. 34, 1135–1144 (2005)
Jiang, Y., Nadolny, H., Kaeshammer, S., Weibels, S., Schröer, W., Weingärtner, H.: The ion speciation of ionic liquids in molecular solvents of low and medium polarity. Faraday Discuss. 154, 391–407 (2012)
Stoppa, A., Hunger, J., Buchner, R.: Conductivities of binary mixtures of ionic liquids with polar solvents. J. Chem. Eng. Data 54, 472–479 (2009)
Hunger, J., Stoppa, A., Buchner, R., Hefter, G.: From ionic liquid to electrolyte solution: dynamics of 1-N-butyl-3-N-methylimidazolium tetrafluoroborate/dichloromethane mixtures. J. Phys. Chem. B 112, 12913–12919 (2008)
Paduszynski, K., Domanska, U.: Thermodynamic modeling of ionic liquid systems: development and detailed overview of novel methodology based on the PC-SAFT. J. Phys. Chem. B 116, 5002–5018 (2012)
Scharf, N.T., Stark, A., Hoffmann, M.M.: Ion pairing and dynamics of the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C6mim][NTf2]) in the low-dielectric solvent chloroform. J. Phys. Chem. B 116, 11488–11497 (2012)
Yates, S. F. Zinnen, H. A.:Two-step purification of chloroform. U.S. Patent 4,922,044 (1990)
Van Geet, A.L.: Calibration of the methanol and glycol nuclear magnetic resonance thermometers with a static thermister probe. Anal. Chem. 40, 2227–2229 (1968)
Kato, H., Saito, T., Nabeshima, M., Shimeda, K., Kinugasa, S.: Assessment of diffusion coefficients of general solvents by PFG-NMR: investigation of the sources of error. J. Magn. Reson. 180, 266–273 (2006)
Jerscow, A., Mueller, N.: 3D diffussion-ordered TOCSY for slowly diffusing molecules. J. Magn. Reson. A 123, 222–225 (1996)
Jerscow, A., Mueller, N.: Suppression of convection artifacts in stimulated-echo diffusion experiements. Double-stimulated-echo experiments. J. Magn. Reson. 125, 372–375 (1997)
Lide, D.R.: CRC Handbook of Chemistry and Physics, 83rd edn. CRC Press, Boca Raton (2003)
Atkins, P., de Paula, J.: Physical Chemistry, 7th edn. Freeman, New York (2002)
Malhotra, R., Woolf, L.A.: Thermodynamic properties of propanone (acetone) at temperatures from 278 to 323 K and pressures up to 400 MPa. J. Chem. Thermodyn. 23, 867–876 (1991)
Hughes, T.J., Syed, T., Graham, B.F., Marsh, K.N., May, E.F.: Heat capacities and low temperature thermal transitions of 1-hexyl and 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. J. Chem. Eng. Data 56, 2153–2159 (2011)
Chirico, R.D., Diky, V., Magee, J.W., Frenkel, M., Marsh, K.N., Rossi, M.J., McQuillan, A.J., Lynden-Bell, R.M., Brett, C.M.A., Dymond, J.H., Goldbeter, A., Hou, J.G., Marquardt, R., Sykes, B.D., Yamanouchi, K.: Thermodynamic and thermophysical properties of the reference ionic liquid: 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide (including mixtures). Part 2. Critical evaluation and recommended property values. Pure Appl. Chem. 81, 791–828 (2009)
Paulechka, Y.U., Blokhin, A.V., Kabo, G.J., Strechan, A.A.: Thermodynamic properties and polymorphism of 1-alkyl-3-methylimidazolium bis(triflamides). J. Chem. Thermodyn. 39, 866–877 (2007)
Blokhin, A.V., Paulechka, Y.U., Kabo, G.J.: Thermodynamic properties of [C6mim][NTf2] in the condensed state. J. Chem. Eng. Data 51, 1377–1388 (2006)
Rai, G., Kumar, A.: An enthalpic approach to delineate the interactions of cations of imidazolium-based ionic liquids with molecular solvents. Phys. Chem. Chem. Phys. 13, 14715–14722 (2011)
Rai, G., Kumar, A.: A reversal from endothermic to exothermic behavior of imidazolium-based ionic liquids in molecular solvents. Chem. Phys. Lett. 496, 143–147 (2010)
Rai, G., Kumar, A.: Probing thermal interactions of ionic liquids with dimethyl sulfoxide. ChemPhysChem 13, 1927–1933 (2012)
Reis, M., Leitão, R.E., Martins, F.: Enthalpies of solution of 1-butyl-3-methylimidazolium tetrafluoroborate in 15 solvents at 298.15. J. Chem. Eng. Data 55, 616–620 (2010)
Heintz, A., Marczak, W., Verevkin, S.P.: Activity coefficients and heats of dilution in mixtures containing ionic liquids. ACS Symp. Ser. 901, 187–192 (2005)
Marczak, W., Verevkin, S.P., Heintz, A.: Enthalpies of solution of organic solutes in the ionic liquid 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide. J. Solution Chem. 32, 519–526 (2003)
Heintz, A., Kulikov, D.V., Verevkin, S.P.: Thermodynamic properties of mixtures containing ionic liquids. 2. Activity coefficients at infinite dilution of hydrocarbons and polar solutes in 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide and in 1,2-dimethyl-3-ethyl-imidazolium bis(trifluoromethylsulfonyl) amide using gas–liquid chromatography. J. Chem. Eng. Data 47, 894–899 (2002)
Nebig, S., Gmehling, J.: Prediction of phase equilibria and excess properties for systems with ionic liquids using modified UNIFAC: typical results and present status of the modified UNIFAC matrix for ionic liquids. Fluid Phase Equilib. 302, 220–225 (2011)
Solanki, S., Hooda, N., Sharma, V.K.: Topological investigations of binary mixtures containing ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate and pyridine or isomeric picolines. J. Chem. Thermodyn. 56, 123–135 (2013)
Stolwijk, N.A., Obeidi, S.: Combined analysis of self-diffusion, conductivity, and viscosity data on room temperature ionic liquids. Electrochim. Acta 54, 1645–1653 (2009)
Hayamizu, K., Tsuzuki, S., Seki, S., Fujii, K., Suenaga, M., Umebayashi, Y.: Studies on the translational and rotational motions of ionic liquids composed of N-methyl-N-propyl-pyrrolidinium (P13) cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts. J. Chem. Phys. 133, 194505/1–194505/13 (2010)
Fitchett, B.D., Knepp, T.N., Conboy, J.C.: 1-Alkyl-3-methylimidazolium bis(perfluoroalkylsulfonyl)imide water-immiscible ionic liquids. The effect of water on electrochemical and physical properties. J. Electrochem. Soc. 151, E219–E225 (2004)
Bulut, S., Eiden, P., Beichel, W., Slattery, J.M., Beyersdorff, T.F., Schubert, T.J.S., Krossing, I.: Temperature dependence of the viscosity and conductivity of mildly functionalized and non-functionalized [Tf2N]-ionic liquids. ChemPhysChem 12, 2296–2310 (2011)
Köddermann, T., Ludwig, R., Paschek, D.: On the validity of Stokes–Einstein and Stokes–Einstein–Debye relations in ionic liquids and ionic-liquid mixtures. ChemPhysChem 9, 1851–1858 (2008)
Zuccaccia, D., Maccioni, A.: An Accurate methodology to identify the level of aggregation in solution by PGSE NMR measurements: the case of half-sandwich diamino ruthenium(II) salts. Organometallics 24, 3476–3486 (2005)
Macchioni, A., Ciancaleoni, G., Zuccaccia, C., Zuccaccia, D.: Determining accurate molecular sizes in solution through NMR diffusion spectroscopy. Chem. Soc. Rev. 37, 479–489 (2008)
Chen, H.-C., Chen, S.-H.: Diffusion of crown ethers in alcohols. J. Phys. Chem. 88, 5118–5121 (1984)
Gierer, A., Wirtz, K.: Molecular theory of microfriction. Z. Naturforsch. A 8, 532–538 (1953)
Schulz, P.S., Schneiders, K., Wasserscheid, P.: Aggregation behaviour of chiral ionic liquids. Tetrahedron Asymmetry 20, 2479–2481 (2009)
Rodriguez, V., Grondin, J., Adamietz, F., Danten, Y.: Local structure in ionic liquids investigated by hyper-Rayleigh scattering. J. Phys. Chem. B 114, 15057–15065 (2010)
Lingscheid, Y., Arenz, S., Giernoth, R.: Heteronuclear NOE spectroscopy of ionic liquids. ChemPhysChem 13, 261–266 (2012)
Acknowledgments
This report is based upon work supported by the National Science Foundation under RUI-Grant No. 0842960 (to. M. M. H) and DFG STA1027/2-3 (to A. S.). We thank the Chemnitz University of Technology, Chair of Technical Chemistry, for providing the facilities and access to their RC1e calorimeter with particular thanks to Dr. Enrico Dietzsch for his invaluable assistance, and Merck (M. Watermann) for the donation of the ionic liquid samples. We thank Mrs. Petra Weiss from the Institute for Physical Chemistry at the Friedrich-Schiller-University in Jena for the DSC measurements.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Scharf, N.T., Stark, A. & Hoffmann, M.M. Calorimetric Study on the Ion Pairing and Aggregation of 1-Ethyl-3-Methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][NTf2]) and Related Ionic Liquids in the Low-Dielectric Constant Solvent Chloroform. J Solution Chem 42, 2034–2056 (2013). https://doi.org/10.1007/s10953-013-0082-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-013-0082-y