Journal of Solution Chemistry

, Volume 42, Issue 8, pp 1580–1590 | Cite as

A Solution State Study of the Complexation and Thermodynamic Parameters of Binary Complexes of the Inner Transition Metals with Piracetam in Aqueous and Mixed Solvents

Article

Abstract

An equilibrium study on complexation behavior of the inner transition metals, where M = {Y(III), La(III, Ce(III, Pr(III), Nd(III), Sm(III), Gd(III), Dy(III), Th(IV)} and L = piracetam, has been carried out using the Irving–Rossotti titration technique in aqueous media at different temperatures and ionic strengths. The protonation constant and stability constants (log10 βn) of the resulting inner metal–ligand complexes have been calculated with the Fortran IV program BEST using the method of least squares and considering the BESTFIT model. Thermodynamic parameters were also evaluated, yielding negative ΔG°, ΔH° and positive ΔS° values that indicate complex formation is favorable at ordinary temperatures. Species distribution curves of complexes have been plotted as function of pH using the SPEPLOT FORTRAN IV program to visualize the presence of various species in equilibrium in the pH range 2–6. To understand more about these equilibria, the stability of these complexes was studied at different percentages of solvent (10–30 % v/v) in different aqua-organic solvent mixtures with methanol, ethanol, 1-butanol and dimethylformamide.

Keywords

Stability constant Thermodynamic parameters Piracetam Inner transition metals Protonation constant 

References

  1. 1.
    Waegemans, T., Wilsher, C.R., Danniau, A., Ferris, S.H., Kurz, A., Winblad, B.: Clinical efficacy of piracetam in cognitive impairment: a meta-analysis. Dement. Geriatr. Cogn. Disord. 13, 217–224 (2002)CrossRefGoogle Scholar
  2. 2.
    Vaglenova, J., Vesselinov, P.: Can nootropic drugs be effective against the impact of ethanol teratogenicity on cognitive performance? Eur. Neuropsychopharmacol. 11, 33–40 (2001)CrossRefGoogle Scholar
  3. 3.
    Gabryel, B., Adamek, M., Pudełko, A., Małecki, A., Trzeciak, H.I.: Piracetam and vinpocetine exert cytoprotective activity and prevent apoptosis of atrocities in vitro in hypoxia and reoxygenation. Neurotoxicology 23, 19–31 (2002)CrossRefGoogle Scholar
  4. 4.
    Winblad, B.: Piracetam: a review of pharmacological properties and clinical uses. CNS Drug Rev. 11, 169–182 (2005)CrossRefGoogle Scholar
  5. 5.
    Elbanowski, M., Makowska, B.M.: The lanthanides as luminescent probes in investigations of biochemical system. J. Photochem. Photobiol. A Chem. 99, 85–92 (1996)CrossRefGoogle Scholar
  6. 6.
    Liang, Y., Wang, Z., Jin, L.P., Yan, C.: Supramolecular formation by aromatic ring stacking and hydrogen bonding in lanthanide(III) complexes with amino acids and 1,10-phenanthroline. J. Mol. Struct. 616, 231–239 (2002)CrossRefGoogle Scholar
  7. 7.
    Misra, S.N., Gagnani, M.A., Devi, I.M., Shukla, R.S.: Biological and clinical aspects of lanthanide coordination compounds. Bioinorg. Chem. Appl. 2, 155–192 (2004)CrossRefGoogle Scholar
  8. 8.
    Varnagy, K., Sovago, I., Goll, W., Suli-Vargha, H., Micera, G.: Potentiometric and spectroscopic studies of transition metal complexes of bis(imidazolyl) and bis(pyridyl) derivatives of amino acids. Inorg. Chim. Acta 283, 233–242 (1998)CrossRefGoogle Scholar
  9. 9.
    Olazabal, G., Castano, R., Mdariaga, J.M.: Potentiometric and spectrophotometric study of the acid–base equilibria of Cr(VI) at 25 °C and different ionic strengths of aqueous KNO3. J. Solution Chem. 22, 825–838 (1993)CrossRefGoogle Scholar
  10. 10.
    Khalil, M.M., Radalla, A.M., Mohamed, A.G.: Potentiometric investigation on complexation of divalent transition metal ions with some zwitterionic buffers and triazoles. J. Chem. Eng. Data 54, 3261–3272 (2009)CrossRefGoogle Scholar
  11. 11.
    Khalil, M.M.: Solution equilibria and stabilities of binary and ternary complexes with N-(2-acetamido)iminodiacetic acid and ribonucleotides (AMP, ADP, and ATP). J. Chem. Eng. Data 45, 837–840 (2000)CrossRefGoogle Scholar
  12. 12.
    Khalil, M.M., Taha, M.: Equilibrium studies of binary and ternary complexes involving tricine and some selected α-amino acids. Monatsh. Chem. 135, 385–395 (2004)CrossRefGoogle Scholar
  13. 13.
    Brintzinger, H., Hammes, G.G.: Inner and outer-sphere complex formation in aqueous solutions of nickel(II)-methyl phosphate. Inorg. Chem. 5, 1286–1287 (1966)CrossRefGoogle Scholar
  14. 14.
    Brittain, H.G., Richardson, F.S.: Circularly polarized emission studies on Tb3+ and Eu3+ complexes with potentially terdentate amino acids in aqueous solution. Bioinorg. Chem. 7, 233–243 (1977)CrossRefGoogle Scholar
  15. 15.
    Garg, B.S., Saxena, V., Dixit, R.: Evaluation of thermodynamic functions and stability constants of lanthanon(III) complexes with 1,2-naphthoquinone-2-thiosemicarbazone-4-sulphonic acid (sodium salt) (NQTS.4S) from potentiometric data. Thermochim. Acta 195, 169–175 (1992)CrossRefGoogle Scholar
  16. 16.
    Thakur, P., Pathak, P.N., Gedris, T., Choppin, G.R.: Complexation of Eu(III), Am(III) and Cm(III) with dicarboxylates: thermodynamics and structural aspects of the binary and ternary complexes. J. Solution Chem. 38, 265–287 (2009)CrossRefGoogle Scholar
  17. 17.
    Jastrzab, R., Lomozik, L.: Stability and coordination mode of complexes of polyphosphates and polymetaphosphates with copper(II) ions in aqueous solution potentiometric, spectral and theoretical studies. J. Solution Chem. 39, 909–919 (2010)CrossRefGoogle Scholar
  18. 18.
    Sharma, S., Patel, A., Bhalodia, J., Ramani, J.: Solution state studies on thermodynamic parameters and complexation behavior of inner transition metal ions with creatinine in aqueous and mixed equilibria. J. Iran. Chem. Res. 2, 267–275 (2009)Google Scholar
  19. 19.
    Petrola, R., Lampen, P., Lindroos, S.: Stability order of the lanthanide chelates of two disubstituted 3-hydroxy-4H-pyran-4-ones in aqueous solution. Talanta 34, 445–448 (1987)Google Scholar
  20. 20.
    Sanna, D., Agoston, C.G., Micera, G., Sovago, I.: The effect of the ring size of fused chelates on the thermodynamic and spectroscopic properties of peptide complexes of copper(II). Polyhedron 20, 3079–3090 (2001)CrossRefGoogle Scholar
  21. 21.
    Irving, H.M., Rossotti, H.S.: The calculation of formation curves of metal complexes from pH titration curves in mixed solvents. J. Chem. Soc. 17, 2904–2910 (1954)CrossRefGoogle Scholar
  22. 22.
    Ramunas, J.M., Martell, A.E.: Program PKAS: a novel algorithm for the computation of successive protonation constants. Can. J. Chem. 60, 168–173 (1982)Google Scholar
  23. 23.
    Ramunas, J.M., Martell, A.E.: BEST: a new program for rigorous calculation of equilibrium parameters of complex multicomponent systems. Can. J. Chem. 60, 2403–2409 (1982)CrossRefGoogle Scholar
  24. 24.
    Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7, 155–162 (1964)CrossRefGoogle Scholar
  25. 25.
    Rosas, H., Sarmiento, L.E., Rodríguez, M., Lubes, V.: Study of the ternary complex formation between vanadium(III)–picolinic acid and the amino acids: cysteine, histidine, aspartic and glutamic acids. J. Solution Chem. 39, 1021–1029 (2010)CrossRefGoogle Scholar
  26. 26.
    Shalaeva, M., Kenseth, J., Lombardo, F., Bastin, A.: Measurement of dissociation constants (pK a values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J. Pharm. Sci. 97, 2581–2606 (2008)CrossRefGoogle Scholar
  27. 27.
    Glasstone, S.: An Introduction to Electrochemistry. D. Van Nostrano Company, Inc., Princeton (1942)Google Scholar
  28. 28.
    Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)CrossRefGoogle Scholar
  29. 29.
    Pitzer, K.S.: Activity Coefficients in Electrolyte Solution, vol. II. CRC Press, Boca Raton (1991)Google Scholar
  30. 30.
    Alderigh, L., Grans, P., Lenco, A., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Rev. 184, 311–318 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ChemistryHemchandracharya North Gujarat UniversityPatanIndia

Personalised recommendations