Skip to main content
Log in

Modelling and Optimization of Stability Constants of Cadmium or Zinc with Biological Buffers (DIPSO or TAPS) in Aqueous Solutions by Electrochemical Techniques

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The complexation behavior of four systems involving cadmium(II) or zinc(II) in aqueous solutions with the biological buffers 3-[N,N-bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid (DIPSO), and [(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]-1-propanesulfonic acid (TAPS) was studied by direct current polarography (DCP) and glass electrode potentiometry (GEP), at 25.0 ± 0.1 °C and ionic strength 0.1 mol·dm−3 KNO3. Except for the Cd–TAPS system, for which full characterization of the system was possible either by DCP or GEP, full characterization of the other metal-buffer systems (Zn–DIPSO, Zn–TAPS and Cd–DIPSO) was only possible using DCP. For Zn-buffers systems, ZnL+ and \( {\text{ZnL(OH)}}_{2}^{ - } \) (where L stands for buffer) were identified. For the Zn–DIPSO system, the overall stability constant values (as log10 β) are 2.1 ± 0.2 and 13.4 ± 0.2, respectively. For the Zn–TAPS system, the overall stability constants values (as log10 β) are 2.4 ± 0.1 and 12.9 ± 0.3, respectively. For the Cd–DIPSO system, the overall stability constants values (as log10 β) of CdL+ and CdL(OH) are 2.9 ± 0.1 and 6.9 ± 0.3, respectively. For the Cd–TAPS system, only the species CdL+ was identified with log10 β = 2.5 ± 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bevans, C.G., Harris, A.L.: Regulation of connexin channels by pH. Direct action of the protonated form of taurine and other aminosulfonates. J. Biol. Chem. 274, 3711–3719 (1999)

    Article  CAS  Google Scholar 

  2. Dows, S.M., Mastropolo, A.M.: Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes. Mol. Reprod. Dev. 46, 551–566 (1997)

    Article  Google Scholar 

  3. Vasconcelos, M.T.S.D., Azenha, M.A.G.O., Almeida, C.M.R.: Copper(II) complexation properties and surfactant activity of 3-[N,N-bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid and N-(2-hydroxyethyl)piperazine-N’-2-hydroxypropanesulfonic acid pH buffers which may affect trace metal speciation in in vitro studies. Anal. Biochem. 265, 193–201 (1998)

    Article  CAS  Google Scholar 

  4. Soares, H.M.V.M., Conde, P.C.F.L.: Electrochemical investigations of the effect of N-substituted aminosulfonic acids with a piperazinic ring pH buffers on heavy metals processes which may have implications on speciation studies. Anal. Chim. Acta 421, 103–111 (2000)

    Article  CAS  Google Scholar 

  5. Soares, H.M.V.M., Barros, G.R.T.: Electrochemical processes of cadmium, copper, lead and zinc in the presence of N-[2-hydroxyethyl]piperazine-N′-[3-propanesulfonic] acid (HEPPS): possible implications in speciation studies. Electroanalysis 13, 325–331 (2001)

    Article  CAS  Google Scholar 

  6. Machado, C.M.M., Sheerlinck, S., Cukrowski, I., Soares, H.M.V.M.: Challenges in modelling and optimisation of stability constants in the study of metal complexes with monoprotonated ligands. Part III. A glass electrode potentiometric and polarographic study of Cu–DIPSO–system. Anal. Chim. Acta 518, 117–126 (2004)

    Article  CAS  Google Scholar 

  7. Orabi, A.S., Azab, H.A., Saad, F., Said, H.: Ternary complexes of La(III), Ce(III), Pr(III) or Er(III) with adenosine 5′-mono, 5′-di, and 5′-triphosphate as primary ligands and some biologically important zwitterionic buffers as secondary ligands. J. Solution Chem. 39, 319–334 (2010)

    Article  CAS  Google Scholar 

  8. Azab, H.A., Elnady, A.M.: Ternary complexes in solution—comparison of the coordination tendency of some biologically important zwitterionic buffers toward the binary complexes of Cu(II) and adenosine 5′monophosphate, 5′-diphosphate and 5′triphosphate. Monatsh. Chem. 125, 849–858 (1994)

    Article  CAS  Google Scholar 

  9. Machado, C.M.M., Soares, H.M.V.M.: Challenges in modelling and optimisation of stability constants in the study of Cu–(TAPS) x –(OH) y system by polarography. Talanta 71, 1352–1363 (1997)

    Article  Google Scholar 

  10. Machado, C.M.M., Olle, V., Soares, H.M.V.M.: Modelling of Pb–(TAPS) x –(OH) y system and refinement of stability constants, in the region of lead hydrolysis and lead hydroxide precipitation, by polarographic and potentiometric optimisation tools: importance of a multi-technique approach. Talanta 71, 1326–1332 (2007)

    Article  CAS  Google Scholar 

  11. Muzikar, M., Havel, J., Macka, M.: Capillary electrophoretic study of interactions of metal ions with crown ethers, a sulphated cyclodextrin and zwitterionic buffers present as additives in the background electrolyte. Electrophoresis 23, 1796–1802 (2002)

    Article  CAS  Google Scholar 

  12. Martell, A.E., Hancock, R.D.: Metal Complexes in Aqueous Solutions, 1st edn. Plenum Press, New York (1996)

    Book  Google Scholar 

  13. Hartley, F.R., Burgess, C., Alcock, R.: Solution Equilibria, 1st edn. Ellis Horwood Ltd., Chichester (1980)

    Google Scholar 

  14. Hancock, R.D., Cukrowski, I., Baloyi, J., Mashishi, J.: The affinity of bismuth(III) for nitrogen-donor ligands. J. Chem. Soc. Dalton Trans. 19, 2895–2899 (1993)

    Article  Google Scholar 

  15. Machado, C.M.M., Cukrowski, I., Gameiro, P., Soares, H.M.V.M.: Challenges in modelling and optimisation of stability constants in the study of metal complexes with monoprotonated ligands. Part I. A glass elctrode potentiometric and polarographic study of a Cu–TAPSOOH system. Anal. Chim. Acta 493, 105–119 (2003)

    Article  CAS  Google Scholar 

  16. Machado, C.M.M., Cukrowski, I., Soares, H.M.V.M.: Complex formation in the region of metal hydrolysis and M(OH)2 precipitation. A glass electrode potentiometric and polarographic study of Cd–(AMPSO)x–(OH)y and Zn–(AMPSO)x–(OH)y systems. Electroanalysis 18, 719–729 (2006)

    Article  CAS  Google Scholar 

  17. Urbanska, J.: Polarographic behaviour of manganese(II) in the presence of oxalate ions in perchlorate and sulphate solutions. J. Solution Chem. 40, 247–260 (2011)

    Article  CAS  Google Scholar 

  18. Asadpour-Zeynali, K., Naseri, A., Vallipour, J., Sajjadi, S.M.: Resolving of voltammetric data for the Ni–glicine and Cu–glicine complexation systems with reversibile and irreversible electrochemical response using MCR-ALS. J. Solution Chem. 41, 1299–1310 (2012)

    Article  CAS  Google Scholar 

  19. Cukrowski, I.: A polarographic method of speciation for labile metal–ligand systems based on mass-balance equations. A differential pulse polarographic study at fixed ligand to metal ratio and varied pH. Anal. Chim. Acta 336, 23–36 (1996)

    Article  CAS  Google Scholar 

  20. Cukrowski, I., Adsetts, M.: Experimental and calculated complex formation curves for a labile metal-ligand system. A differential pulse polarographic study of the Pb(II)–(N,N,N’,N’-tetramethylethylenediamine)-OH system at fixed ligand to metal ratio and varied pH. J. Electroanal. Chem. 429, 129–137 (1997)

    Article  CAS  Google Scholar 

  21. May, P., Murray, K., Williams, D.R.: The use of glass electrodes for the determination of formation constants–II: Simulation of titration data. Talanta 32, 483–489 (1985)

    Article  CAS  Google Scholar 

  22. May, P.M., Murray, K., Williams, D.R.: The use of glass electrodes for the determination of formation constants–III. Optimization of titration data: the ESTA library of computer programs. Talanta 35, 825–830 (1988)

    Article  CAS  Google Scholar 

  23. Martell, A.E., Smith, R.M.: NIST Standard Reference Database 46 Version 8.0, NIST Critically Selected Stability Constants of Metal Complexes Database. US Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD (2004)

  24. Bradford, W.L.: The determination of a stability constant for the aqueous complex Zn(OH)z0 using anodic stripping voltammetry. Limnol. Oceanogr. 18, 757–762 (1973)

    Article  Google Scholar 

  25. Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Leuz, A., Sjoberg, S., Wanner, H.: Chemical speciation of environmentally metals with inorganic ligands. Part 4: the Cd2+ + OH, \( {\text{CO}}_{3}^{2 - } ,\,{\text{SO}}_{4}^{2 - } \), and \( {\text{PO}}_{4}^{3 - } \) systems (IUPAC Technical Report). Pure Appl. Chem. 83, 1163–1214 (2011)

  26. Methrom Application–Bulletin no 36. Herisau, Switzerland (1975)

  27. Bond, A.M.: Modern polarographic methods in analytical chemistry. In: Bard, A.J. (ed.) Modern Polarographic Methods in Analytical Chemistry. Marcel Dekker Inc., New York (1980)

    Google Scholar 

  28. Machado, C.M.M., Cukrowski, I., Soares, H.M.V.M.: Challenges in modelling and optimization of stability constants in the study of metal complexes with monoprotonated ligands. Part II. A glass elctrode potentiometric and polarographic study of the copper(II)/2-yydroxy-3-[(2-hydroxy-1,1-dimethylethyl)amino]propane-1-sulfonic acid (AMPSO)–hydroxy system. Helv. Chim. Acta 86, 3288–3304 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Ignacy Cukrowski from the University of Pretoria (South Africa) for the polarographic modelling software (3D-CFC program) and Professor Carlos Gomes from the Faculty of Sciences/Porto University for the COPOTISY program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena M. V. M. Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, C.M.M., Alves, G.M.S., Pinto, I.S.S. et al. Modelling and Optimization of Stability Constants of Cadmium or Zinc with Biological Buffers (DIPSO or TAPS) in Aqueous Solutions by Electrochemical Techniques. J Solution Chem 42, 1602–1619 (2013). https://doi.org/10.1007/s10953-013-0063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0063-1

Keywords

Navigation