Skip to main content
Log in

New LSER Model Based on Solvent Empirical Parameters for the Prediction and Description of the Solubility of Buckminsterfullerene in Various Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Because of the importance of the solubility of buckminsterfullerene, C60, as the most well-known carbon nanomaterial, a multiparameter linear model is proposed for C60 solubility in different solvents using solvent empirical parameters. The obtained model covers more than 81 and 87 % of the variance in the training and test sets, respectively. On the other hand, because of the potential of solvent empirical parameters for probing different aspects of the solvent–solute interactions, some information about the solubility of C60 in solution phase was obtained. The results showed that hydrogen bond donation ability, basicity scale and dispersion interactions were some of the effective parameters for correlating the solubility of C60 in various solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dodziuk, H., et al.: Fullerenes. In: Dodziuk, H. (ed.) Strained Hydrocarbons, pp. 299–315. Wiley, Weinheim (2000)

    Google Scholar 

  2. Liu, H., Tao, G.-h., Evans, D.G., Kou, Y.: Solubility of C60 in ionic liquids. Carbon 43, 1782–1785 (2005)

    Article  CAS  Google Scholar 

  3. Beck, M.T., Mándi, G.: Solubility of C60. Fullerene Sci. Technol. 5, 291–310 (1997)

    Article  CAS  Google Scholar 

  4. Makitra, R.G., Pristanskii, R.E., Flyunt, R.I.: Solvent effects on the solubility of C60 fullerene. Russ. J. Gen. Chem. 73, 1227–1232 (2003)

    Article  CAS  Google Scholar 

  5. Semenov, K.N., Charykov, N.A., Keskinov, V.A., Piartman, A.K., Blokhin, A.A., Kopyrin, A.A.: Solubility of light fullerenes in organic solvents. J. Chem. Eng. Data 55, 13–36 (2010)

    Article  CAS  Google Scholar 

  6. Le, T., Epa, V.C., Burden, F.R., Winkler, D.A.: Quantitative structure-property relationship modeling of diverse materials properties. Chem. Rev. 112, 2889–2919 (2012)

    Article  CAS  Google Scholar 

  7. Yousefinejad, S., Hemmateenejad, B., Mehdipour, A.R.: New autocorrelation QTMS-based descriptors for use in QSAM of peptides. J. Iran. Chem. Soc. 9, 569–577 (2012)

    Article  CAS  Google Scholar 

  8. Yousefinejad, S., Hemmateenejad, B.: A chemometrics approach to predict the dispersibility of graphene in various liquid phases using theoretical descriptors and solvent empirical parameters. Colloids Surf. A: Physicochem. Eng. Asp. (2013). doi:10.1016/j.colsurfa.2013.03.020

  9. Todeschini, R., Consonni, V., Gramatica, P.: Chemometrics in QSAR. In: Brown, S., Walczak, B., Taulér, R. (eds.) Comprehensive Chemometrics, vol. 4, pp. 129–172. Elsevier, Oxford (2009)

    Chapter  Google Scholar 

  10. Kamlet, M.J., Abraham, M.H., Doherty, R.M., Taft, R.W.: Solubility properties in polymers and biologicalmedia. 4. Correlations of octanol/water partition coefficients with solvatochromic parameters. J. Am. Chem. Soc. 106, 464–466 (1984)

    Article  CAS  Google Scholar 

  11. Kamlet, M.J., Doherty, R.M., Carr, P.W., Mackay, D., Abraham, M.H., Taft, R.W.: Linear solvation energy relationships. 44. Parameter estimation rules that allow accurate prediction of octanol/water partition coefficients and other solubility and toxicity properties of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 22, 503–509 (1988)

    Article  CAS  Google Scholar 

  12. Marcus, Y.M., Kamlet, J., Tafts, R.W.: Linear solvation energy relationships. Standard molar Gibbs free energies and enthalpies of transfer of ions from water into nonaqueous solvents. J. Phys. Chem. 92, 3613–3622 (1988)

    Article  CAS  Google Scholar 

  13. Hierlemann, A., Zellers, E.T., Ricco, A.J.: Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors. Anal. Chem. 73, 3458–3466 (2001)

    Article  CAS  Google Scholar 

  14. Hemmateenejad, B., Safavi, A., Dorostkar, S.: Aggregation of imidazolium based ionic liquids in binary methanol–water solvents: a linear solvation free energy relationship study. J. Mol. Liq. 160, 35–39 (2011)

    Article  CAS  Google Scholar 

  15. Toropov, A.A., Leszczynska, D., Leszczynski, J.: QSPR study on solubility of fullerene C60 in organic solvents using optimal descriptors calculated with SMILES. Chem. Phys. Lett. 441, 119–122 (2007)

    Article  CAS  Google Scholar 

  16. Gharagheizi, F., Alamdari, R.F.: A molecular-based model for prediction of solubility of C60 fullerene in various solvents. Fullerenes Nanotub. Carbon Nanostruct. 16, 40–57 (2008)

    Article  CAS  Google Scholar 

  17. Pourbasheer, E., Riahi, S., Ganjali, M.R., Norouzi, P.: Prediction of solubility of fullerene C60 in various organic solvents by genetic algorithm-multiple linear regression. Fullerenes Nanotub. Carbon Nanostruct. 19, 585–598 (2011)

    Article  CAS  Google Scholar 

  18. Liu, H., Yao, X., Zhang, R., Liu, M., Hu, Z., Fan, B.: Accurate quantitative structure-property relationship model to predict the solubility of C60 in various solvents based on a novel approach using a least-squares support vector machine. J. Phys. Chem. B 109, 20565–20571 (2005)

    Article  CAS  Google Scholar 

  19. Marcus, Y.: Solubilities of buckminsterfullerene and sulfur hexafluoride in various solvents. J. Phys. Chem. B 101, 8617–8623 (1997)

    Article  CAS  Google Scholar 

  20. Kiss, I.Z., Mandi, I., Beck, M.T.: Artificial neural network approach to predict the solubility of C60 in various solvents. J. Phys. Chem. A 104, 8081–8088 (2000)

    Article  CAS  Google Scholar 

  21. Kamlet, M.J., Abboud, J.L.M., Taft, R.W.: The solvatochromic comparison method. 6. The π* scale of solvent polarities. J. Am. Chem. Soc. 99, 6027–6038 (1977)

    Article  CAS  Google Scholar 

  22. Katritzky, A.R., Tamm, T., Wang, Y., Sild, S., Karelson, M.: QSPR treatment of solvent scales. J. Chem. Inf. Comput. Sci. 39, 684–691 (1999)

    Article  CAS  Google Scholar 

  23. Katritzky, A.R., Fara, D.C., Wang, H., Tämm, K., Karelson, M.: Quantitative measures of solvent polarity. Chem. Rev. 104, 175–198 (2004)

    Article  CAS  Google Scholar 

  24. Katritzky, A.R., Fara, D.C., Kuanar, M., Hur, E., Karelson, M.: The classification of solvents by combining classical QSPR methodology with principal component analysis. J. Phys. Chem. A 109, 10323–10341 (2005)

    Article  CAS  Google Scholar 

  25. Eriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T.D., Mcdowell, R.M., Gramatica, P.: Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health 111, 1361–1375 (2003)

    CAS  Google Scholar 

  26. Shao, J.U.N.: Linear model selection by cross-validation. J. Am. Stat. Assoc. 88, 486–494 (2012)

    Article  Google Scholar 

  27. Consonni, V., Ballabio, D., Todeschini, R.: Evaluation of model predictive ability by external validation techniques. J. Chemometr. 24, 194–201 (2010)

    Article  CAS  Google Scholar 

  28. Hawkins, D.M., Basak, S.C., Mills, D.: Assessing model fit by cross-validation. J. Chem. Inf. Comput. Sci. 43, 579–586 (2003)

    Article  CAS  Google Scholar 

  29. Tetko, I.V., Livingstone, D.J., Luik, A.I.: Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inf. Comput. Sci. 35, 826–833 (1995)

    Article  CAS  Google Scholar 

  30. Livingstone, D.J., Salt, D.W.: Judging the significance of multiple linear regression models. J. Med. Chem. 48, 661–663 (2005)

    Article  CAS  Google Scholar 

  31. Rücker, C., Rücker, G., Meringer, M.: Y-randomization and its variants in QSPR/QSAR. J. Chem. Inf. Model. 47, 2345–2357 (2007)

    Article  Google Scholar 

  32. Netzeva, T.I., Worth, A.P., Aldenberg, T., Benigni, R., Cronin, M.T., Gramatica, P., Jaworska, J.S., Kahn, S., Klopman, G., Marchant, C.A., Myatt, G., Nikolova-Jeliazkova, N., Patlewicz, G.Y., Perkins, R., Roberts, R., Schultz, T., Stanton, D.W., van de Sandt, J.J., Tong, W., Veith, G., Yang, C.: Current status of methods for defining the applicability domain of (quantitative) structure–activity relationships. ATLA–Altern. Lab. Anim. 33, 1–19 (2005)

    Google Scholar 

  33. Eriksson, L., Jaworska, J., Cronin, M., Worth, A., Gramatica, P., McDowell, R.: Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 111, 1361–1375 (2003)

    Article  CAS  Google Scholar 

  34. Craney, T.A., Surles, J.G.: Model-dependent variance inflation factor cutoff values. Quality Eng. 14, 391–403 (2002)

    Article  Google Scholar 

  35. Slinker, B.K., Glantz, S.A.: Multiple regression for physiological data analysis: the problem of multicollinearity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 249, R1–R12 (1985)

    CAS  Google Scholar 

  36. Fatemi, M.H., Baher, E., Ghorbanzade’h, M.: Predictions of chromatographic retention indices of alkylphenols with support vector machines and multiple linear regression. J. Sep. Sci. 32, 4133–4142 (2009)

    Article  CAS  Google Scholar 

  37. Marcus, Y.: The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22, 409–416 (1993)

    Article  CAS  Google Scholar 

  38. Kamlet, M.J., Abboud, J.-L.M., Abraham, M.H., Taft, R.W.: Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983)

    Article  CAS  Google Scholar 

  39. Krygowski, T.M., Milcrazek, E., Wrona, P.K.: An extension of the Kamlet–Taft basicity scale of solvents. J. Chem. Soc., Perkin Trans. 2, 1563–1568 (1980)

    Google Scholar 

  40. Kamlet, M.J., Taft, R.W.: Linear solvation energy relationships. Part 1. Solvent polarity–polarizability effects on infrared spectra. J. Chem. Soc., Perkin Trans. 2, 337–341 (1979)

    Google Scholar 

  41. Abraham, M.H., Whiting, G.S., Doherty, R.M., Shuely, W.J.: Hydrogen bonding. Part 13. A new method for the characterization of GLC stationary phases–the Laffort data set. J. Chem. Soc., Perkin Trans. 2, 1451–1460 (1990)

    Google Scholar 

  42. Abraham, M.H., Grellier, P.L., McGill, R.A.: Determination of olive oil–gas and hexadecane–gas partition coefficients, and calculation of the corresponding olive oil–water and hexadecane–water partition coefficients. J. Chem. Soc., Perkin Trans. 2, 797–803 (1987)

    Google Scholar 

  43. Robinson, J.L., Roninson, W.J., Marshall, M.A., Barnes, A.D., Johnson, K.J., Salas, D.S.: Liquid–solid chromatography on amberlite XAD-2 and other styrene–divinylbenzene adsorbents. I. Development of a solvent eluotropic scale. J. Chromatogr. 189, 145–167 (1980)

    Article  CAS  Google Scholar 

  44. David, J.G., Hallam, H.E.: Infrared solvent shifts and molecular interactions. Triatomic molecules, carbon disulfide, carbonyl sulfide, and sulfur dioxide. Spectrochim. Acta A 23, 593–603 (1967)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Yousefinejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousefinejad, S., Honarasa, F., Abbasitabar, F. et al. New LSER Model Based on Solvent Empirical Parameters for the Prediction and Description of the Solubility of Buckminsterfullerene in Various Solvents. J Solution Chem 42, 1620–1632 (2013). https://doi.org/10.1007/s10953-013-0062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0062-2

Keywords

Navigation