Abstract
Although aspartic acid is a non-essential amino acid, its importance is crucial for a major metabolic pathway and it is present in different types of foods. This highlights the need of a better knowledge of its transport properties. A Taylor dispersion technique has been used for measuring mutual diffusion coefficients of binary aqueous solutions of l-aspartic acid, an associated electrolyte, and the corresponding salt sodium l-aspartate, which behaves as a non-associated electrolyte, at 298.15 K and concentrations ranging from (0.001 to 0.100) mol·dm−3. Thermodynamic factors for the diffusion of aspartic acid and sodium aspartate have been estimated on the basis of the Onsager–Fuoss equation. Furthermore, experimental diffusion coefficients of aspartic acid are compared with those computed by the modified Onsager–Fuoss equation, applied for partially dissociated electrolytes.
Similar content being viewed by others
References
Sadovnikova, M.S., Belikov, V.M.: Ways for application of amino-acids in industry. Usp. Khim. 47, 357–383 (1978)
Sanderson, K.: Amino acid provides shortcut to drugs. Nature 488(7411), 266 (2012)
Axup, J.Y., Bajjuri, K.M., Ritland, M., Hutchins, B.M., Kim, C.H., Kazane, S.A., Halder, R., Forsyth, J.S., Santidrian, A.F., Stafin, K., Lu, Y.C., Tran, H., Seller, A.J., Biroce, S.L., Szydlik, A., Pinkstaff, J.K., Tian, F., Sinha, S.C., Felding-Habermann, B., Smider, V.V., Schultz, P.G.: Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl. Acad. Sci. USA 109, 16101–16106 (2012). doi:10.1073/pnas.1211023109
Barrett, G.C., Elmore, D.T.: Amino Acids and Peptides. Cambridge University Press, Cambridge (1998)
Tapia, M.J., Montserin, M., Valente, A.J.M., Burrows, H.D., Mallavia, R.: Binding of polynucleotides to conjugated polyelectrolytes and its applications in sensing. Adv. Colloid Interface 158, 94–107 (2010). doi:10.1016/j.cis.2009.09.001
Davies, M.L., Douglas, P., Burrows, H.D., Miguel, M.D., Douglas, A.: Effect of aggregation on the photophysical properties of three fluorene–phenylene-based cationic conjugated polyelectrolytes. J. Phys. Chem. B 115, 6885–6892 (2011). doi:10.1021/jp202446a
Monteserin, M., Burrows, H.D., Mallavia, R., Di Paolo, R.E., Macanita, A.L., Tapia, M.J.: How to change the aggregation in the DNA/surfactant/cationic conjugated polyelectrolyte system through the order of component addition: anionic versus neutral surfactants. Langmuir 26, 11705–11714 (2010). doi:10.1021/la1011764
Greenham, N.C., Moratti, S.C., Bradley, D.D.C., Friend, R.H., Holmes, A.B.: Efficient light-emitting diodes based on polymers with high electron affinities. Nature 365(6447), 628–630 (1993). doi:10.1038/365628a0
Zalar, P., Kamkar, D., Naik, R., Ouchen, F., Grote, J.G., Bazan, G.C., Nguyen, T.Q.: DNA electron injection interlayers for polymer light-emitting diodes. J. Am. Chem. Soc. 133, 11010–11013 (2011). doi:10.1021/ja201868d
Zhang, Y., Zalar, P., Kim, C., Collins, S., Bazan, G.C., Nguyen, T.Q.: DNA interlayers enhance charge injection in organic field-effect transistors. Adv. Mater. 24, 4255–4260 (2012). doi:10.1002/adma.201201248
Mazur, K., Heisler, I.A., Meech, S.R.: Ultrafast dynamics and hydrogen-bond structure in aqueous solutions of model peptides. J. Phys. Chem. B 114, 10684–10691 (2010). doi:10.1021/jp106423a
Azevedo, R.A., Lancien, M., Lea, P.J.: The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30, 143–162 (2006). doi:10.1007/s00726-005-0245-2
Zgola-Grzeskowiak, A., Grzeskowiak, T.: Determination of glutamic acid and aspartic acid in tomato juice by capillary isotachophoresis. Int. J. Food Prop. 15, 628–637 (2012). doi:10.1080/10942912.2010.494759
Gladding, C.M., Fitzjohn, S.M., Molnar, E.: Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol. Rev. 61, 395–412 (2009). doi:10.1124/pr.109.001735
Ikeda, K.: New seasonings. Chem. Senses 27, 847–849 (2002). doi:10.1093/chemse/27.9.847
Ager, D.J., Pantaleone, D.P., Henderson, S.A., Katritzky, A.R., Prakash, I., Walters, D.E.: Commercial, synthetic nonnutritive sweeteners. Angew. Chem. Int. Ed. 37, 1802–1817 (1998)
Zhao, Y., Tanaka, M., Kinoshita, T., Higuchi, M., Tan, T.W.: Controlled release and entrapment of enantiomers in self-assembling scaffolds composed of beta-sheet peptides. Biomacromolecules 10, 3266–3272 (2009). doi:10.1021/bm900857j
Costa, D., Valente, A.J.M., Miguel, M.G., Queiroz, J.: Gel network photodisruption: a new strategy for the codelivery of plasmid DNA and drugs. Langmuir 27, 13780–13789 (2011). doi:10.1021/la2026285
Polson, A.: On the diffusion constants of the amino-acids. Biochem. J. 31, 1903–1912 (1937)
Lyons, M.S., Thomas, J.V.: Diffusion studies on dilute aqueous glycine solutions at 1° and 25° with the Gouy interference method. J. Am. Chem. Soc. 72, 4506–4511 (1950). doi:10.1021/ja01166a047
Dunlop, P.J.: Further studies of the diffusion of mixed solutes with the Gouy diffusiometer. J. Am. Chem. Soc. 77, 2994–2996 (1955). doi:10.1021/ja01616a018
Woolf, L.A., Gosting, L.J., Miller, D.G.: Isothermal diffusion measurements on system H2O–glycine–KCl at 25°—tests of Onsager reciprocal relation. J. Am. Chem. Soc. 84, 317–331 (1962). doi:10.1021/ja00862a001
Ellerton, H.D., Mulcahy, D.E., Dunlop, P.J., Reinfelds, G.: Mutual frictional coefficients of several amino acids in aqueous solution at 25°. J. Phys. Chem. 68, 403–408 (1964). doi:10.1021/j100784a035
Paduano, L., Sartorio, R., Vitagliano, V., Costantino, L.: Transport and thermodynamic properties of the systems (d, l)norleucine–water and (l)phenylalanine–water, at 25°C. J. Mol. Liq. 47, 193–202 (1990). doi:10.1016/0167-7322(90)80076-v
Myerson, A.S., Lo, P.Y.: Cluster formation and diffusion in supersaturated binary and ternary amino-acid solutions. J. Cryst. Growth 110, 26–33 (1991). doi:10.1016/0022-0248(91)90862-y
Gutter, F.J., Kegeles, G.: The diffusion of α-alanine in water at 25°. J. Am. Chem. Soc. 75(16), 3893–3896 (1953)
Longsworth, L.G.: Diffusion measurements, at 1°, of aqueous solutions of amino acids, peptides and sugars. J. Am. Chem. Soc. 74, 4155–4159 (1952). doi:10.1021/ja01136a059
Ma, Y.G., Zhu, C.Y., Ma, P.S., Yu, K.T.: Studies on the diffusion coefficients of amino acids in aqueous solutions. J. Chem. Eng. Data 50, 1192–1196 (2005). doi:10.1021/je049582g
Miller, D.G., Albright, J.G.: Optical methods. In: Wakeham, W.A., Nagashima, A., Sengers, J.V. (eds.) Measurement of the Transport Properties of Fluids. Experimental Thermodynamics, vol. 3, pp. 272–294. Blackwell, Oxford (1991)
Lu, R.H., Leaist, D.G.: Comparison of the diffusion of aqueous glycine hydrochloride and aqueous glycine. J. Solution Chem. 27, 285–297 (1998). doi:10.1023/a:1022619430507
Umecky, T., Kuga, T., Funazukuri, T.: Infinite dilution binary diffusion coefficients of several α-amino acids in water over a temperature range from (293.2 to 333.2) K with the Taylor dispersion technique. J. Chem. Eng. Data 51, 1705–1710 (2006). doi:10.1021/je060149b
Wu, Y.X., Ma, P.S., Liu, Y.Q., Li, S.F.: Diffusion coefficients of l-proline, l-threonine and l-arginine in aqueous solutions at 25 °C. Fluid Phase Equilib. 186, 27–38 (2001). doi:10.1016/s0378-3812(01)00355-7
Ribeiro, A.C.F., Leaist, D.G., Esteso, M.A., Lobo, V.M.M., Valente, A.J.M., Santos, C., Cabral, A., Veiga, F.J.B.: Binary mutual diffusion coefficients of aqueous solutions of α-cyclodextrin at temperatures from 298.15 to 312.15 K. J. Chem. Eng. Data 51, 1368–1371 (2006). doi:10.1021/je060092t
Ribeiro, A.C.F., Lobo, V.M.M., Leaist, D.G., Natividade, J.J.S., Verissimo, L.P., Barros, M.C.F., Cabral, A.M.T.D.P.V.: Binary diffusion coefficients for aqueous solutions of lactic acid. J. Solution Chem. 34, 1009–1016 (2005). doi:10.1007/s10953-005-6987-3
Deng, Z.P., Leaist, D.G.: Ternary mutual diffusion coefficients of MgCl2 + MgSO4 + H2O and Na2SO4 + MgSO4 + H2O from Taylor profiles. Can. J. Chem. 69, 1548–1553 (1991). doi:10.1139/v91-229
Barthel, J., Gores, H.J., Lohr, C.M., Seidl, J.J.: Taylor dispersion measurements at low electrolyte concentrations. 1. Tetraalkylammonium perchlorate aqueous solutions. J. Solution Chem. 25, 921–935 (1996). doi:10.1007/bf00972589
Alizadeh, A., Nieto de Castro, C.A., Wakeham, W.A.: The theory of the Taylor dispersion technique for liquid diffusivity measurements. Int. J. Thermophys. 1, 243–284 (1980)
Barros, M.C.F., Ribeiro, A.C.F., Valente, A.J.M., Lobo, V.M.M., Cabral, A.M.T.D.P.V., Veiga, F.J.B., Teijeiro, C., Esteso, M.A.: Mass transport techniques as a tool for a better understanding of the structure of l-dopa in aqueous solutions. Int. J. Pharm. 447, 293–297 (2013)
Apelblat, A., Manzurola, E., Orekhova, Z.: Electrical conductance studies in aqueous solutions with aspartic ions. J. Solution Chem. 37, 97–105 (2008). doi:10.1007/s10953-007-9223-5
Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Dover Publications, Inc., New York (2002)
Apelblat, A.: Dissociation constants and limiting conductances of organic acids in water. J. Mol. Liq. 95, 99–145 (2002). doi:10.1016/s0167-7322(01)00281-1
Miyamoto, S., Schmidt, C.L.A.: Transference and conductivity studies on solutions of certain proteins and amino acids with special reference to the formation of complex ions between the alkaline earth elements and certain proteins. J. Biol. Chem. 99, 335–358 (1933)
Rajeswari, M.R.: Electrostatic interactions between side chains of α-amino acids: conductance studies. J. Biochem. Mol. Biol. Biophys. 99, 467–469 (1999)
Erdey-Grúz, T.: Transport Phenomena in Aqueous Solutions, 2nd edn. Adam Hilger, London (1974)
Korson, L., Drosthan, W., Millero, F.J.: Viscosity of water at various temperatures. J. Phys. Chem. 73, 34–39 (1969). doi:10.1021/j100721a006
Owen, B.B., Milner, C.E., Miller, R.C., Cogan, H.L.: Dielectric constant of water as a function of temperature and pressure. J. Phys. Chem. 65, 2065–2070 (1961). doi:10.1021/j100828a035
Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold Publishing Corporation, New York (1967)
Leaist, D.G., Lu, R.H.: Crossover from molecular to ionic diffusion in dilute aqueous solutions of hydrolysed ethylamine, diethylamine and triethylamine. J. Chem. Soc. Faraday Trans. 93, 1341–1344 (1997). doi:10.1039/a607224k
Leaist, D.G., Lyons, P.A.: Diffusion in dilute aqueous acetic-acid solutions at 25 °C. J. Solution Chem. 13, 77–85 (1984). doi:10.1007/bf00646041
Vitagliano, V., Lyons, P.A.: Diffusion in aqueous acetic acid solutions. J. Am. Chem. Soc. 78, 4538–4542 (1956). doi:10.1021/ja01599a008
Cussler, E.L.: Diffusion. Mass Transfer in Fluid Systems, vol. 2. Cambridge University Press, Cambridge (2000)
Acknowledgments
Financial support from FCT (FEDER)-PTDC/AAC-CLI/098308/2008 and PTDC/AAC-CLI/118092/2010 is gratefully acknowledged. MCFB is grateful for the SFRH/BD/72305/2010 grant.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ribeiro, A.C.F., Barros, M.C.F., Verissimo, L.M.P. et al. Binary Diffusion Coefficients for Aqueous Solutions of l-Aspartic Acid and Its Respective Monosodium Salt. J Solution Chem 43, 83–92 (2014). https://doi.org/10.1007/s10953-013-0034-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-013-0034-6