Skip to main content
Log in

Binary Diffusion Coefficients for Aqueous Solutions of l-Aspartic Acid and Its Respective Monosodium Salt

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Although aspartic acid is a non-essential amino acid, its importance is crucial for a major metabolic pathway and it is present in different types of foods. This highlights the need of a better knowledge of its transport properties. A Taylor dispersion technique has been used for measuring mutual diffusion coefficients of binary aqueous solutions of l-aspartic acid, an associated electrolyte, and the corresponding salt sodium l-aspartate, which behaves as a non-associated electrolyte, at 298.15 K and concentrations ranging from (0.001 to 0.100) mol·dm−3. Thermodynamic factors for the diffusion of aspartic acid and sodium aspartate have been estimated on the basis of the Onsager–Fuoss equation. Furthermore, experimental diffusion coefficients of aspartic acid are compared with those computed by the modified Onsager–Fuoss equation, applied for partially dissociated electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. Sadovnikova, M.S., Belikov, V.M.: Ways for application of amino-acids in industry. Usp. Khim. 47, 357–383 (1978)

    Article  CAS  Google Scholar 

  2. Sanderson, K.: Amino acid provides shortcut to drugs. Nature 488(7411), 266 (2012)

    Article  CAS  Google Scholar 

  3. Axup, J.Y., Bajjuri, K.M., Ritland, M., Hutchins, B.M., Kim, C.H., Kazane, S.A., Halder, R., Forsyth, J.S., Santidrian, A.F., Stafin, K., Lu, Y.C., Tran, H., Seller, A.J., Biroce, S.L., Szydlik, A., Pinkstaff, J.K., Tian, F., Sinha, S.C., Felding-Habermann, B., Smider, V.V., Schultz, P.G.: Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl. Acad. Sci. USA 109, 16101–16106 (2012). doi:10.1073/pnas.1211023109

    Article  CAS  Google Scholar 

  4. Barrett, G.C., Elmore, D.T.: Amino Acids and Peptides. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  5. Tapia, M.J., Montserin, M., Valente, A.J.M., Burrows, H.D., Mallavia, R.: Binding of polynucleotides to conjugated polyelectrolytes and its applications in sensing. Adv. Colloid Interface 158, 94–107 (2010). doi:10.1016/j.cis.2009.09.001

    Article  CAS  Google Scholar 

  6. Davies, M.L., Douglas, P., Burrows, H.D., Miguel, M.D., Douglas, A.: Effect of aggregation on the photophysical properties of three fluorene–phenylene-based cationic conjugated polyelectrolytes. J. Phys. Chem. B 115, 6885–6892 (2011). doi:10.1021/jp202446a

    Article  CAS  Google Scholar 

  7. Monteserin, M., Burrows, H.D., Mallavia, R., Di Paolo, R.E., Macanita, A.L., Tapia, M.J.: How to change the aggregation in the DNA/surfactant/cationic conjugated polyelectrolyte system through the order of component addition: anionic versus neutral surfactants. Langmuir 26, 11705–11714 (2010). doi:10.1021/la1011764

    Article  CAS  Google Scholar 

  8. Greenham, N.C., Moratti, S.C., Bradley, D.D.C., Friend, R.H., Holmes, A.B.: Efficient light-emitting diodes based on polymers with high electron affinities. Nature 365(6447), 628–630 (1993). doi:10.1038/365628a0

    Article  CAS  Google Scholar 

  9. Zalar, P., Kamkar, D., Naik, R., Ouchen, F., Grote, J.G., Bazan, G.C., Nguyen, T.Q.: DNA electron injection interlayers for polymer light-emitting diodes. J. Am. Chem. Soc. 133, 11010–11013 (2011). doi:10.1021/ja201868d

    Article  CAS  Google Scholar 

  10. Zhang, Y., Zalar, P., Kim, C., Collins, S., Bazan, G.C., Nguyen, T.Q.: DNA interlayers enhance charge injection in organic field-effect transistors. Adv. Mater. 24, 4255–4260 (2012). doi:10.1002/adma.201201248

    Article  CAS  Google Scholar 

  11. Mazur, K., Heisler, I.A., Meech, S.R.: Ultrafast dynamics and hydrogen-bond structure in aqueous solutions of model peptides. J. Phys. Chem. B 114, 10684–10691 (2010). doi:10.1021/jp106423a

    Article  CAS  Google Scholar 

  12. Azevedo, R.A., Lancien, M., Lea, P.J.: The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30, 143–162 (2006). doi:10.1007/s00726-005-0245-2

    Article  CAS  Google Scholar 

  13. Zgola-Grzeskowiak, A., Grzeskowiak, T.: Determination of glutamic acid and aspartic acid in tomato juice by capillary isotachophoresis. Int. J. Food Prop. 15, 628–637 (2012). doi:10.1080/10942912.2010.494759

    Article  CAS  Google Scholar 

  14. Gladding, C.M., Fitzjohn, S.M., Molnar, E.: Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol. Rev. 61, 395–412 (2009). doi:10.1124/pr.109.001735

    Article  CAS  Google Scholar 

  15. Ikeda, K.: New seasonings. Chem. Senses 27, 847–849 (2002). doi:10.1093/chemse/27.9.847

    Article  Google Scholar 

  16. Ager, D.J., Pantaleone, D.P., Henderson, S.A., Katritzky, A.R., Prakash, I., Walters, D.E.: Commercial, synthetic nonnutritive sweeteners. Angew. Chem. Int. Ed. 37, 1802–1817 (1998)

    Article  CAS  Google Scholar 

  17. Zhao, Y., Tanaka, M., Kinoshita, T., Higuchi, M., Tan, T.W.: Controlled release and entrapment of enantiomers in self-assembling scaffolds composed of beta-sheet peptides. Biomacromolecules 10, 3266–3272 (2009). doi:10.1021/bm900857j

    Article  CAS  Google Scholar 

  18. Costa, D., Valente, A.J.M., Miguel, M.G., Queiroz, J.: Gel network photodisruption: a new strategy for the codelivery of plasmid DNA and drugs. Langmuir 27, 13780–13789 (2011). doi:10.1021/la2026285

    Article  CAS  Google Scholar 

  19. Polson, A.: On the diffusion constants of the amino-acids. Biochem. J. 31, 1903–1912 (1937)

    CAS  Google Scholar 

  20. Lyons, M.S., Thomas, J.V.: Diffusion studies on dilute aqueous glycine solutions at 1° and 25° with the Gouy interference method. J. Am. Chem. Soc. 72, 4506–4511 (1950). doi:10.1021/ja01166a047

    Article  CAS  Google Scholar 

  21. Dunlop, P.J.: Further studies of the diffusion of mixed solutes with the Gouy diffusiometer. J. Am. Chem. Soc. 77, 2994–2996 (1955). doi:10.1021/ja01616a018

    Article  CAS  Google Scholar 

  22. Woolf, L.A., Gosting, L.J., Miller, D.G.: Isothermal diffusion measurements on system H2O–glycine–KCl at 25°—tests of Onsager reciprocal relation. J. Am. Chem. Soc. 84, 317–331 (1962). doi:10.1021/ja00862a001

    Article  CAS  Google Scholar 

  23. Ellerton, H.D., Mulcahy, D.E., Dunlop, P.J., Reinfelds, G.: Mutual frictional coefficients of several amino acids in aqueous solution at 25°. J. Phys. Chem. 68, 403–408 (1964). doi:10.1021/j100784a035

    Article  CAS  Google Scholar 

  24. Paduano, L., Sartorio, R., Vitagliano, V., Costantino, L.: Transport and thermodynamic properties of the systems (d, l)norleucine–water and (l)phenylalanine–water, at 25°C. J. Mol. Liq. 47, 193–202 (1990). doi:10.1016/0167-7322(90)80076-v

    Article  CAS  Google Scholar 

  25. Myerson, A.S., Lo, P.Y.: Cluster formation and diffusion in supersaturated binary and ternary amino-acid solutions. J. Cryst. Growth 110, 26–33 (1991). doi:10.1016/0022-0248(91)90862-y

    Article  CAS  Google Scholar 

  26. Gutter, F.J., Kegeles, G.: The diffusion of α-alanine in water at 25°. J. Am. Chem. Soc. 75(16), 3893–3896 (1953)

    Article  CAS  Google Scholar 

  27. Longsworth, L.G.: Diffusion measurements, at 1°, of aqueous solutions of amino acids, peptides and sugars. J. Am. Chem. Soc. 74, 4155–4159 (1952). doi:10.1021/ja01136a059

    Article  CAS  Google Scholar 

  28. Ma, Y.G., Zhu, C.Y., Ma, P.S., Yu, K.T.: Studies on the diffusion coefficients of amino acids in aqueous solutions. J. Chem. Eng. Data 50, 1192–1196 (2005). doi:10.1021/je049582g

    Article  CAS  Google Scholar 

  29. Miller, D.G., Albright, J.G.: Optical methods. In: Wakeham, W.A., Nagashima, A., Sengers, J.V. (eds.) Measurement of the Transport Properties of Fluids. Experimental Thermodynamics, vol. 3, pp. 272–294. Blackwell, Oxford (1991)

  30. Lu, R.H., Leaist, D.G.: Comparison of the diffusion of aqueous glycine hydrochloride and aqueous glycine. J. Solution Chem. 27, 285–297 (1998). doi:10.1023/a:1022619430507

    Article  CAS  Google Scholar 

  31. Umecky, T., Kuga, T., Funazukuri, T.: Infinite dilution binary diffusion coefficients of several α-amino acids in water over a temperature range from (293.2 to 333.2) K with the Taylor dispersion technique. J. Chem. Eng. Data 51, 1705–1710 (2006). doi:10.1021/je060149b

    Article  CAS  Google Scholar 

  32. Wu, Y.X., Ma, P.S., Liu, Y.Q., Li, S.F.: Diffusion coefficients of l-proline, l-threonine and l-arginine in aqueous solutions at 25 °C. Fluid Phase Equilib. 186, 27–38 (2001). doi:10.1016/s0378-3812(01)00355-7

    Article  CAS  Google Scholar 

  33. Ribeiro, A.C.F., Leaist, D.G., Esteso, M.A., Lobo, V.M.M., Valente, A.J.M., Santos, C., Cabral, A., Veiga, F.J.B.: Binary mutual diffusion coefficients of aqueous solutions of α-cyclodextrin at temperatures from 298.15 to 312.15 K. J. Chem. Eng. Data 51, 1368–1371 (2006). doi:10.1021/je060092t

    Article  CAS  Google Scholar 

  34. Ribeiro, A.C.F., Lobo, V.M.M., Leaist, D.G., Natividade, J.J.S., Verissimo, L.P., Barros, M.C.F., Cabral, A.M.T.D.P.V.: Binary diffusion coefficients for aqueous solutions of lactic acid. J. Solution Chem. 34, 1009–1016 (2005). doi:10.1007/s10953-005-6987-3

    Article  CAS  Google Scholar 

  35. Deng, Z.P., Leaist, D.G.: Ternary mutual diffusion coefficients of MgCl2 + MgSO4 + H2O and Na2SO4 + MgSO4 + H2O from Taylor profiles. Can. J. Chem. 69, 1548–1553 (1991). doi:10.1139/v91-229

    Article  CAS  Google Scholar 

  36. Barthel, J., Gores, H.J., Lohr, C.M., Seidl, J.J.: Taylor dispersion measurements at low electrolyte concentrations. 1. Tetraalkylammonium perchlorate aqueous solutions. J. Solution Chem. 25, 921–935 (1996). doi:10.1007/bf00972589

    Article  CAS  Google Scholar 

  37. Alizadeh, A., Nieto de Castro, C.A., Wakeham, W.A.: The theory of the Taylor dispersion technique for liquid diffusivity measurements. Int. J. Thermophys. 1, 243–284 (1980)

    Article  CAS  Google Scholar 

  38. Barros, M.C.F., Ribeiro, A.C.F., Valente, A.J.M., Lobo, V.M.M., Cabral, A.M.T.D.P.V., Veiga, F.J.B., Teijeiro, C., Esteso, M.A.: Mass transport techniques as a tool for a better understanding of the structure of l-dopa in aqueous solutions. Int. J. Pharm. 447, 293–297 (2013)

    Article  CAS  Google Scholar 

  39. Apelblat, A., Manzurola, E., Orekhova, Z.: Electrical conductance studies in aqueous solutions with aspartic ions. J. Solution Chem. 37, 97–105 (2008). doi:10.1007/s10953-007-9223-5

    Article  CAS  Google Scholar 

  40. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Dover Publications, Inc., New York (2002)

    Google Scholar 

  41. Apelblat, A.: Dissociation constants and limiting conductances of organic acids in water. J. Mol. Liq. 95, 99–145 (2002). doi:10.1016/s0167-7322(01)00281-1

    Article  CAS  Google Scholar 

  42. Miyamoto, S., Schmidt, C.L.A.: Transference and conductivity studies on solutions of certain proteins and amino acids with special reference to the formation of complex ions between the alkaline earth elements and certain proteins. J. Biol. Chem. 99, 335–358 (1933)

    CAS  Google Scholar 

  43. Rajeswari, M.R.: Electrostatic interactions between side chains of α-amino acids: conductance studies. J. Biochem. Mol. Biol. Biophys. 99, 467–469 (1999)

    Google Scholar 

  44. Erdey-Grúz, T.: Transport Phenomena in Aqueous Solutions, 2nd edn. Adam Hilger, London (1974)

    Google Scholar 

  45. Korson, L., Drosthan, W., Millero, F.J.: Viscosity of water at various temperatures. J. Phys. Chem. 73, 34–39 (1969). doi:10.1021/j100721a006

    Article  CAS  Google Scholar 

  46. Owen, B.B., Milner, C.E., Miller, R.C., Cogan, H.L.: Dielectric constant of water as a function of temperature and pressure. J. Phys. Chem. 65, 2065–2070 (1961). doi:10.1021/j100828a035

    Article  CAS  Google Scholar 

  47. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold Publishing Corporation, New York (1967)

    Google Scholar 

  48. Leaist, D.G., Lu, R.H.: Crossover from molecular to ionic diffusion in dilute aqueous solutions of hydrolysed ethylamine, diethylamine and triethylamine. J. Chem. Soc. Faraday Trans. 93, 1341–1344 (1997). doi:10.1039/a607224k

    Article  CAS  Google Scholar 

  49. Leaist, D.G., Lyons, P.A.: Diffusion in dilute aqueous acetic-acid solutions at 25 °C. J. Solution Chem. 13, 77–85 (1984). doi:10.1007/bf00646041

    Article  CAS  Google Scholar 

  50. Vitagliano, V., Lyons, P.A.: Diffusion in aqueous acetic acid solutions. J. Am. Chem. Soc. 78, 4538–4542 (1956). doi:10.1021/ja01599a008

    Article  CAS  Google Scholar 

  51. Cussler, E.L.: Diffusion. Mass Transfer in Fluid Systems, vol. 2. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Acknowledgments

Financial support from FCT (FEDER)-PTDC/AAC-CLI/098308/2008 and PTDC/AAC-CLI/118092/2010 is gratefully acknowledged. MCFB is grateful for the SFRH/BD/72305/2010 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur J. M. Valente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, A.C.F., Barros, M.C.F., Verissimo, L.M.P. et al. Binary Diffusion Coefficients for Aqueous Solutions of l-Aspartic Acid and Its Respective Monosodium Salt. J Solution Chem 43, 83–92 (2014). https://doi.org/10.1007/s10953-013-0034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0034-6

Keywords

Navigation