Skip to main content
Log in

Development of a Unifying Framework for the Restrictions in Multi-component Diffusion Close to Equilibrium

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work a unifying framework is developed for multi-component diffusion close to equilibrium by proposing additional restrictions for the Fickian diffusion coefficients such as the Onsager reciprocal relations. Moreover, it is shown that these additional restrictions can explain the discrepancy, reported in the literature, of calculating negative concentrations in Fickian ternary free diffusion observed even if the second thermodynamic law constraints and the phase stability criteria are satisfied. It is believed that this work could be used to further investigate multi-component diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

B ij :

Auxiliary parameters

c i :

Molar concentration

c T :

Total molar concentration

D ij :

Fickian diffusion coefficients

\( \bar{D}_{ij} \) :

Binary Maxwell–Stefan diffusion coefficient

\( D_{i}^{\text{T}} \) :

Multi-component thermal diffusion coefficient of the i-th substance

F i :

External forces per mole

G ij :

Auxiliary parameters

\( J_{i}^{ \ne } \) :

Molar flux of the i-th substance relative to an arbitrary velocity

\( J_{i}^{*} \) :

Molar flux of the i-th substance relative to the velocity of the center of mass

L :

Thickness of the solution

L ij :

Conductivity coefficients

M i :

Molecular weight of the i-th substance

P h :

Hydrostatic pressure

R :

Universal gas constant

R ij :

Resistance (friction) coefficients for diffusion

S :

Rate of entropy production per unit volume

T :

Absolute temperature

t :

Time

u i :

Volume fraction of the i-th substance

V i :

Partial molar volume of the i-th substance

v i :

Velocity of the i-th substance

v :

Arbitrary reference velocity

w i :

Weighting factors whose sum is equal to unity

X i :

Thermodynamic driving force for diffusion

X i :

Transformed thermodynamic driving force for diffusion

x i :

Mole fraction of the i-th substance

z :

Axial length, m

a i :

Activity of the i-th substance

\( \gamma_{i} \) :

Activity coefficient of the i-th substance

δ ij :

Kronecker delta

\( \mu_{i} \) :

Chemical potential of the i-th substance

\( \Uppsi \) :

Dissipation function

References

  1. Truesdell, C.: Mechanical basis of diffusion. J. Chem. Phys. 37, 2336–2344 (1962)

    Article  CAS  Google Scholar 

  2. Fick, A.: Über Diffusion. Ann. Physik 94, 59–86 (1855)

    Article  Google Scholar 

  3. Slattery, J.C.: Advanced Transport Phenomena. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  4. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2002)

    Google Scholar 

  5. Maxwell, J.C.: V. Illustrations of the dynamical theory of gases.—Part I. On the motions and collisions of perfectly elastic spheres. Philos. Mag. 19, 19–32 (1860)

    Google Scholar 

  6. Maxwell, J.C.: II. Illustrations of the dynamical theory of gases. Philos. Mag. 20, 21–37 (1860)

    Google Scholar 

  7. Maxwell, J.C.: XXII. On the dynamical theory of gases. Philos. Mag. 35, 185–217 (1868)

    Google Scholar 

  8. Stefan, J.: On the equilibrium and movement of gas mixtures, in particular diffusion. Sitzungsber. Kais. Akad. Wiss. Wien 63, 63–124 (1871)

    Google Scholar 

  9. Stefan, J.: On the dynamical theory of diffusion of gases. Sitzungsber. Kais. Akad. Wiss. Wien 65, 323–363 (1872)

    Google Scholar 

  10. Curtiss, C.F.: Symmetric gaseous diffusion coefficients. J. Chem. Phys. 49, 2917–2949 (1968)

    Article  CAS  Google Scholar 

  11. Condiff, D.W.: On symmetric multicomponent diffusion coefficients. J. Chem. Phys. 51, 4209–4212 (1969)

    Article  CAS  Google Scholar 

  12. Cussler, E.L.: Diffusion Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  13. Taylor, R., Krishna, R.: Multicomponent Mass Transfer. Wiley, New York (1993)

    Google Scholar 

  14. Onsager, L., Fuoss, R.M.: Irreversible processes in electrolytes: diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes. J. Phys. Chem. 36, 2659–2778 (1932)

    Google Scholar 

  15. Onsager, L.: Theories and problems of liquid diffusion. Ann. N.Y. Acad. Sci. 46, 241–265 (1945)

    Article  CAS  Google Scholar 

  16. Bearman, R.J., Kirkwood, J.G.: The statistical mechanics of transport processes. XI. Equations of transport in multicomponent systems. J. Chem. Phys. 28, 136–145 (1958)

    Article  CAS  Google Scholar 

  17. Bearman, R.J.: On the molecular basis of some current theories of diffusion. J. Phys. Chem. 65, 1961–1968 (1961)

    Article  CAS  Google Scholar 

  18. Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)

    Article  CAS  Google Scholar 

  19. Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 37, 2265–2279 (1931)

    Article  Google Scholar 

  20. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press, Oxford (1959)

    Google Scholar 

  21. Crank, J.: The Mathematics of Diffusion. Clarendon, Oxford (1975)

    Google Scholar 

  22. Nauman, E.B., Savoca, J.: An engineering approach to an unsolved problem in multicomponent diffusion. AIChE J. 47, 1016–1021 (2001)

    Article  CAS  Google Scholar 

  23. Kirkaldy, J.S., Weichert, D., Zia-Ul-Haq, : Diffusion in multicomponent metallic systems VI. Some thermodynamic properties of the D matrix and the corresponding solutions of the diffusion equations. Can. J. Phys. 41, 2166–2173 (1963)

    Article  CAS  Google Scholar 

  24. Price Jr, P.E., Romdhane, I.H.: Multicomponent diffusion theory and its applications to polymer–solvent systems. AIChE J. 49, 309–322 (2003)

    Article  CAS  Google Scholar 

  25. Tyrrell, H.J.V., Harris, K.R.: Diffusion in Liquids. A Theoretical and Experimental Study. Butterworths, London (1984)

    Google Scholar 

  26. Gandhi, K.S.: Use of Fick’s law and Maxwell–Stefan equations in computation of multicomponent diffusion. AIChE J. 58, 3601–3605 (2012)

    Article  CAS  Google Scholar 

  27. Miller, D.G.: Thermodynamics of irreversible processes: the experimental verification of the Onsager reciprocal relations. Chem. Rev. 60, 15–37 (1960)

    Article  CAS  Google Scholar 

  28. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1964)

    Google Scholar 

  29. de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (1984)

    Google Scholar 

  30. Kuiken, G.D.C.: Thermodynamics of Irreversible Processes—Applications to Diffusion and Rheology. Wiley, New York (1994)

    Google Scholar 

  31. Demirel, Y.A., Sandler, S.I.: Nonequilibrium thermodynamics in engineering and science. J. Phys. Chem. B 108, 31–43 (2004)

    Article  CAS  Google Scholar 

  32. Schmitt, A., Craig, J.B.: Frictional coefficient formalism and mechanical equilibrium in membranes. J. Phys. Chem. 81, 1338–1342 (1977)

    Article  CAS  Google Scholar 

  33. Verros, G.D., Malamataris, N.A.: Multi-component diffusion in polymer solutions. Polymer 46, 12626–12636 (2005)

    Article  CAS  Google Scholar 

  34. Verros, G.D.: Application of non-equilibrium thermodynamics and computer aided analysis to the estimation of diffusion coefficients in polymer solutions: the solvent evaporation method. J. Membr. Sci. 328, 31–57 (2009)

    Article  CAS  Google Scholar 

  35. Casimir, H.B.G.: On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343–350 (1945)

    Article  Google Scholar 

  36. Wigner, E.P.: Derivations of Onsager’s reciprocal conditions. J. Chem. Phys. 22, 1912–1915 (1954)

    Article  CAS  Google Scholar 

  37. Miller, D.G.: Ternary isothermal diffusion and the validity of the Onsager reciprocity relations. J. Phys. Chem. 63, 570–578 (1959)

    Article  CAS  Google Scholar 

  38. Coleman, B.D., Truesdell, C.: On the reciprocal relations of Onsager. J. Chem. Phys. 33, 28–31 (1960)

    Article  CAS  Google Scholar 

  39. Miller, D.G.: Application of irreversible thermodynamics to electrolyte solutions. I. Determination of ionic transport coefficients l ij for isothermal vector transport processes in binary electrolyte systems. J. Phys. Chem. 70, 2639–2659 (1966)

    Article  CAS  Google Scholar 

  40. Truesdell, C.A.: Rational Thermodynamics. Springer, New York (1984)

    Book  Google Scholar 

  41. Kondepudi, D.P., Prigogine, I.: Thermodynamics nonequilibrium. In: Trigg, G.L. (ed.) Encyclopedia of Applied Physics. Wiley, Weinheim (2003)

    Google Scholar 

  42. Lorimer, J.W.: Phenomeological coefficients and frames of reference for transport processes in liquids and membranes. Part I—resistance coefficients, friction coefficients and generalized diffusivities in isothermal systems. J. Chem. Soc., Faraday Trans. 2(74), 75–83 (1978)

    Article  Google Scholar 

  43. Lorimer, J.W.: Phenomenological coefficients and frames of reference for transport processes in liquids and membranes. Part II—resistance coefficients in non-isothermal systems. J. Chem. Soc., Faraday Trans. 2(74), 84–92 (1978)

    Article  Google Scholar 

  44. Verros, G.D.: On the validity of the Onsager reciprocal relations in multi-component diffusion. Phys. Lett. A 365, 34–38 (2007)

    Article  CAS  Google Scholar 

  45. Verros, G.D.: On the validity of the Onsager reciprocal relations in simultaneous heat & mass transfer. Phys. A 385, 487–492 (2007)

    Article  CAS  Google Scholar 

  46. Merk, H.J.: The macroscopic equations for simultaneous heat and mass transfer in isotropic, continuous and closed systems. Appl. Sci. Res. A8, 73–99 (1959)

    Article  Google Scholar 

  47. Miller, D.G., Vitagliano, V., Sartorio, R.: Some comments on multicomponent diffusion: negative main term diffusion coefficients, second law constraints, solvent choices, and reference frame transformations. J. Phys. Chem. 90, 1509–1519 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George D. Verros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verros, G.D., Xentes, G.K. Development of a Unifying Framework for the Restrictions in Multi-component Diffusion Close to Equilibrium. J Solution Chem 43, 59–70 (2014). https://doi.org/10.1007/s10953-013-0018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0018-6

Keywords

Navigation