Abstract
In this work a unifying framework is developed for multi-component diffusion close to equilibrium by proposing additional restrictions for the Fickian diffusion coefficients such as the Onsager reciprocal relations. Moreover, it is shown that these additional restrictions can explain the discrepancy, reported in the literature, of calculating negative concentrations in Fickian ternary free diffusion observed even if the second thermodynamic law constraints and the phase stability criteria are satisfied. It is believed that this work could be used to further investigate multi-component diffusion.
Similar content being viewed by others
Abbreviations
- B ij :
-
Auxiliary parameters
- c i :
-
Molar concentration
- c T :
-
Total molar concentration
- D ij :
-
Fickian diffusion coefficients
- \( \bar{D}_{ij} \) :
-
Binary Maxwell–Stefan diffusion coefficient
- \( D_{i}^{\text{T}} \) :
-
Multi-component thermal diffusion coefficient of the i-th substance
- F i :
-
External forces per mole
- G ij :
-
Auxiliary parameters
- \( J_{i}^{ \ne } \) :
-
Molar flux of the i-th substance relative to an arbitrary velocity
- \( J_{i}^{*} \) :
-
Molar flux of the i-th substance relative to the velocity of the center of mass
- L :
-
Thickness of the solution
- L ij :
-
Conductivity coefficients
- M i :
-
Molecular weight of the i-th substance
- P h :
-
Hydrostatic pressure
- R :
-
Universal gas constant
- R ij :
-
Resistance (friction) coefficients for diffusion
- S :
-
Rate of entropy production per unit volume
- T :
-
Absolute temperature
- t :
-
Time
- u i :
-
Volume fraction of the i-th substance
- V i :
-
Partial molar volume of the i-th substance
- v i :
-
Velocity of the i-th substance
- v ≠ :
-
Arbitrary reference velocity
- w i :
-
Weighting factors whose sum is equal to unity
- X i :
-
Thermodynamic driving force for diffusion
- X ′ i :
-
Transformed thermodynamic driving force for diffusion
- x i :
-
Mole fraction of the i-th substance
- z :
-
Axial length, m
- a i :
-
Activity of the i-th substance
- \( \gamma_{i} \) :
-
Activity coefficient of the i-th substance
- δ ij :
-
Kronecker delta
- \( \mu_{i} \) :
-
Chemical potential of the i-th substance
- \( \Uppsi \) :
-
Dissipation function
References
Truesdell, C.: Mechanical basis of diffusion. J. Chem. Phys. 37, 2336–2344 (1962)
Fick, A.: Über Diffusion. Ann. Physik 94, 59–86 (1855)
Slattery, J.C.: Advanced Transport Phenomena. Cambridge University Press, Cambridge (1999)
Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2002)
Maxwell, J.C.: V. Illustrations of the dynamical theory of gases.—Part I. On the motions and collisions of perfectly elastic spheres. Philos. Mag. 19, 19–32 (1860)
Maxwell, J.C.: II. Illustrations of the dynamical theory of gases. Philos. Mag. 20, 21–37 (1860)
Maxwell, J.C.: XXII. On the dynamical theory of gases. Philos. Mag. 35, 185–217 (1868)
Stefan, J.: On the equilibrium and movement of gas mixtures, in particular diffusion. Sitzungsber. Kais. Akad. Wiss. Wien 63, 63–124 (1871)
Stefan, J.: On the dynamical theory of diffusion of gases. Sitzungsber. Kais. Akad. Wiss. Wien 65, 323–363 (1872)
Curtiss, C.F.: Symmetric gaseous diffusion coefficients. J. Chem. Phys. 49, 2917–2949 (1968)
Condiff, D.W.: On symmetric multicomponent diffusion coefficients. J. Chem. Phys. 51, 4209–4212 (1969)
Cussler, E.L.: Diffusion Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge (1997)
Taylor, R., Krishna, R.: Multicomponent Mass Transfer. Wiley, New York (1993)
Onsager, L., Fuoss, R.M.: Irreversible processes in electrolytes: diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes. J. Phys. Chem. 36, 2659–2778 (1932)
Onsager, L.: Theories and problems of liquid diffusion. Ann. N.Y. Acad. Sci. 46, 241–265 (1945)
Bearman, R.J., Kirkwood, J.G.: The statistical mechanics of transport processes. XI. Equations of transport in multicomponent systems. J. Chem. Phys. 28, 136–145 (1958)
Bearman, R.J.: On the molecular basis of some current theories of diffusion. J. Phys. Chem. 65, 1961–1968 (1961)
Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)
Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 37, 2265–2279 (1931)
Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press, Oxford (1959)
Crank, J.: The Mathematics of Diffusion. Clarendon, Oxford (1975)
Nauman, E.B., Savoca, J.: An engineering approach to an unsolved problem in multicomponent diffusion. AIChE J. 47, 1016–1021 (2001)
Kirkaldy, J.S., Weichert, D., Zia-Ul-Haq, : Diffusion in multicomponent metallic systems VI. Some thermodynamic properties of the D matrix and the corresponding solutions of the diffusion equations. Can. J. Phys. 41, 2166–2173 (1963)
Price Jr, P.E., Romdhane, I.H.: Multicomponent diffusion theory and its applications to polymer–solvent systems. AIChE J. 49, 309–322 (2003)
Tyrrell, H.J.V., Harris, K.R.: Diffusion in Liquids. A Theoretical and Experimental Study. Butterworths, London (1984)
Gandhi, K.S.: Use of Fick’s law and Maxwell–Stefan equations in computation of multicomponent diffusion. AIChE J. 58, 3601–3605 (2012)
Miller, D.G.: Thermodynamics of irreversible processes: the experimental verification of the Onsager reciprocal relations. Chem. Rev. 60, 15–37 (1960)
Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1964)
de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (1984)
Kuiken, G.D.C.: Thermodynamics of Irreversible Processes—Applications to Diffusion and Rheology. Wiley, New York (1994)
Demirel, Y.A., Sandler, S.I.: Nonequilibrium thermodynamics in engineering and science. J. Phys. Chem. B 108, 31–43 (2004)
Schmitt, A., Craig, J.B.: Frictional coefficient formalism and mechanical equilibrium in membranes. J. Phys. Chem. 81, 1338–1342 (1977)
Verros, G.D., Malamataris, N.A.: Multi-component diffusion in polymer solutions. Polymer 46, 12626–12636 (2005)
Verros, G.D.: Application of non-equilibrium thermodynamics and computer aided analysis to the estimation of diffusion coefficients in polymer solutions: the solvent evaporation method. J. Membr. Sci. 328, 31–57 (2009)
Casimir, H.B.G.: On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343–350 (1945)
Wigner, E.P.: Derivations of Onsager’s reciprocal conditions. J. Chem. Phys. 22, 1912–1915 (1954)
Miller, D.G.: Ternary isothermal diffusion and the validity of the Onsager reciprocity relations. J. Phys. Chem. 63, 570–578 (1959)
Coleman, B.D., Truesdell, C.: On the reciprocal relations of Onsager. J. Chem. Phys. 33, 28–31 (1960)
Miller, D.G.: Application of irreversible thermodynamics to electrolyte solutions. I. Determination of ionic transport coefficients l ij for isothermal vector transport processes in binary electrolyte systems. J. Phys. Chem. 70, 2639–2659 (1966)
Truesdell, C.A.: Rational Thermodynamics. Springer, New York (1984)
Kondepudi, D.P., Prigogine, I.: Thermodynamics nonequilibrium. In: Trigg, G.L. (ed.) Encyclopedia of Applied Physics. Wiley, Weinheim (2003)
Lorimer, J.W.: Phenomeological coefficients and frames of reference for transport processes in liquids and membranes. Part I—resistance coefficients, friction coefficients and generalized diffusivities in isothermal systems. J. Chem. Soc., Faraday Trans. 2(74), 75–83 (1978)
Lorimer, J.W.: Phenomenological coefficients and frames of reference for transport processes in liquids and membranes. Part II—resistance coefficients in non-isothermal systems. J. Chem. Soc., Faraday Trans. 2(74), 84–92 (1978)
Verros, G.D.: On the validity of the Onsager reciprocal relations in multi-component diffusion. Phys. Lett. A 365, 34–38 (2007)
Verros, G.D.: On the validity of the Onsager reciprocal relations in simultaneous heat & mass transfer. Phys. A 385, 487–492 (2007)
Merk, H.J.: The macroscopic equations for simultaneous heat and mass transfer in isotropic, continuous and closed systems. Appl. Sci. Res. A8, 73–99 (1959)
Miller, D.G., Vitagliano, V., Sartorio, R.: Some comments on multicomponent diffusion: negative main term diffusion coefficients, second law constraints, solvent choices, and reference frame transformations. J. Phys. Chem. 90, 1509–1519 (1986)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Verros, G.D., Xentes, G.K. Development of a Unifying Framework for the Restrictions in Multi-component Diffusion Close to Equilibrium. J Solution Chem 43, 59–70 (2014). https://doi.org/10.1007/s10953-013-0018-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-013-0018-6