Skip to main content
Log in

Solubilization and Release of a Model Drug Nimesulide from PEO–PPO–PEO Block Copolymer Core–Shell Micelles: Effect of Size of PEO Blocks

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The commercially available polypropylene oxide (PPO)–polyethylene oxide (PEO) symmetrical triblock copolymers (Pluronics®) have been recognized as pharmaceutical excipients and used in a variety of applications. This paper reports studies on micellar and solubilization behavior of three PEO–PPO–PEO block copolymers, viz. P103, P104 and P105 (same PPO mol. wt = 3250 g·mol−1 but different  % PEO = 30, 40 and 50 %, respectively) in aqueous solutions. Critical micellization concentrations (CMCs), critical micellization temperatures (CMTs), and micelle size/polydispersity for copolymers with and without the drug, nimesulide (NIM), are reported. The solubilization of NIM is significantly enhanced with increasing hydrophobicity (P103 > P104 > P105), concentration, temperature and in the presence of added salt. The copolymer hydrophobicity, temperature and the drug loading strongly affect micelle behavior. The micelle–water partition coefficient (P) and thermodynamic parameters of solubilization, viz. Gibbs energy (\( \Updelta G_{s}^{\text{o}} \)), enthalpy (\( \Updelta H_{s}^{\text{o}} \)) and entropy (\( T\Updelta S_{s}^{\text{o}} \)), were calculated. The solubilization site of the drug in different micellar solutions and its release from Pluronics® micelles in phosphate buffer saline (PBS) solution at 37 °C were examined. The kinetics of NIM exhibits burst release characteristics, which are believed to be controlled by degradation of the copolymers. These studies were carried out to investigate the feasibility of using Pluronics® as a release vehicle of nimesulide in vitro. From the results, it was concluded that Pluronic® based formulations might be practical for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nakashima, K., Bahadur, P.: Aggregation of water-soluble block copolymers in aqueous solutions: Recent trends. Adv. Colloid Interface Sci. 123–126, 75–96 (2006)

    Article  Google Scholar 

  2. Chu, B., Zhou, Z.: Physical chemistry of polyoxyalkylene block copolymer surfactants. In: Nace, V. (ed.) Nonionic Surfactants: Polyoxyalkylene Block Copolymer Studies, vol. 60. Marcel–Dekker, Inc., New York (1996)

    Google Scholar 

  3. Riess, G., Bahadur, P., Hurtrez, G.: Block Copolymers. In Encyclopedia of Polymer Science and Engineering, 2nd edn. Wiley, New York (1985)

    Google Scholar 

  4. Nystrom, B., Kjøniksen, A.: Dynamic light scattering of a poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer in water. Langmuir 13, 4520–4526 (1997)

    Article  Google Scholar 

  5. Kwon, G.S., Okano, T.: Polymeric micelles as new drug carriers. Adv. Drug Deliv. Rev. 21, 107–116 (1996)

    Article  CAS  Google Scholar 

  6. Allen, C., Maysinger, D., Eisenberg, A.: Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B 16, 3–27 (1999)

    Article  CAS  Google Scholar 

  7. Bromberg, L.: Polymeric micelles in oral chemotherapy. J. Control Release 128, 99–112 (2008)

    Article  CAS  Google Scholar 

  8. Croy, S.R., Kwon, G.S.: Polymeric micelles for drug delivery. Current Pharm. Des. 12, 4669–4684 (2006)

    Article  CAS  Google Scholar 

  9. Rupp, C., Steckel, H., Müller, B.W.: Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine. Int. J. Pharm. 395, 272–280 (2010)

    Article  CAS  Google Scholar 

  10. Müller, B.W., Albers, E.: Complexation of dihydropyridine derivatives with cyclodextrins and 2-hydroxypropyl-β-cyclodextrin in solution. Int. J. Pharm. 79, 273–288 (1992)

    Article  Google Scholar 

  11. Lawrence, M.J., Rees, G.D.: Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 45, 89–121 (2000)

    Article  CAS  Google Scholar 

  12. Barenholz, Y.: Liposome application: Problems and prospects. Curr. Opin. Colloid Interface Sci. 6, 66–77 (2001)

    Article  CAS  Google Scholar 

  13. Jones, M.C., Leroux, J.C.: Polymeric micelles a new generation of colloidal drug carriers Eur. J. Pharm. Biopharm. 48, 101–111 (1999)

    Article  CAS  Google Scholar 

  14. Kataoka, K., Kwon, G.S., Yokoyama, M., Okano, T., Sakurai, Y.: Block copolymer micelles as vehicles for drug delivery. J. Control Release 24, 119–132 (1993)

    Article  CAS  Google Scholar 

  15. Jonkman-de Vries, J.D., Flora, K.P., Bult, A., Beijnen, J.H.: Pharmaceutical development of (investigational) anticancer agents for parenteral use—A review. Drug Dev. Ind. Pharm. 22, 475–494 (1996)

    Article  CAS  Google Scholar 

  16. Yokoyama, M., Satoh, A., Sakurai, Y., Okano, T., Matsumura, Y., Kakizoe, T., Kataoka, K.: Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J. Control Release 55, 219–229 (1998)

    Article  CAS  Google Scholar 

  17. Torchilin, V.P.: Structure and design of polymeric surfactant based drug delivery systems. J. Control Release 73, 172 (2001)

    Article  Google Scholar 

  18. Parmar, A., Singh, K., Bahadur, A., Marangoni, G., Bahadur, P.: Interaction and solubilization of some phenolic antioxidants in Pluronic® micelles. Colloids Surf. B Biointerfaces 86, 319–326 (2011)

    Article  CAS  Google Scholar 

  19. Bromberg, L., Tripathy, S.K., Kumar, J., Nalwa, H.S. (eds.): Handbook of Polyelectrolytes and Their Applications. American Scientific, New York (2002)

    Google Scholar 

  20. Barreiro-Iglesias, R., Bromberg, L., Temchenko, M., Hatton, T.A., Concheiro, A., Alvarez Lorenzo, C.: Solubilization and stabilization of camptothecin in micellar solutions of pluronic–g-poly(acrylic acid) copolymers. J. Control Release 97, 537–549 (2004)

    Article  CAS  Google Scholar 

  21. Dorn, K., Hoerpel, G., Ringsdorf, H.: In: Gebelein, C.G., Carraher, J.C.E. (eds.) Bioactive Polymer Systems. Plenum, New York (1985)

    Google Scholar 

  22. Kabanov, A.V., Alakhov, V.Y.: Pluronic block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Critical Reviews in Therapeutic Drug Carrier System 19, 1–72 (2002)

    Article  CAS  Google Scholar 

  23. Kwon, G., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., Kataoka, K.: Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 12, 192–195 (1995)

    Article  CAS  Google Scholar 

  24. Liawa, J., Lin, Y.: Evaluation of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) gels as a release vehicle for percutaneous fentanyl. J. Control Release 68, 273–282 (2000)

    Article  Google Scholar 

  25. Kadam, Y., Yerramilli, U., Bahadur, A., Bahadur, P.: Solubilization of poorly water-soluble drug carbamezapine in Pluronic® micelles: Effect of molecular characteristics, temperature and added salt on the solubilizing capacity. Colloids Surf. B 72, 141–147 (2009)

    Article  CAS  Google Scholar 

  26. Kadam, Y., Yerramilli, U., Bahadur, A., Bahadur, P.: Micelles from PEO–PPO–PEO block copolymers as nanocontainers for solubilization of a poorly water soluble drug hydrochlorothiazide. Colloids Surf. B Biointerfaces 83, 49–57 (2011)

    Article  CAS  Google Scholar 

  27. Parekh, P., Singh, K., Marangoni, D.G., Bahadur, P.: Micellization and solubilization of a model hydrophobic drug nimesulide in aqueous salt solutions of Tetronic® T904. Colloids Surf. B 83, 69–77 (2011)

    Article  CAS  Google Scholar 

  28. Barreiro-Iglesias, R., Bromberg, L., Temchenko, M., Hatton, T.A., Alvarez-Lorenzo, C., Concheiro, A.: Pluronic–g-poly(acrylic acid) copolymers as novel excipients for site specific, sustained release tablets. Eur. J. Pharm. Sci. 26, 374–385 (2005)

    Article  CAS  Google Scholar 

  29. Bae, K.H., Lee, Y., Park, T.G.: Oil-encapsulating PEO–PPO–PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules 8, 650–656 (2007)

    Article  CAS  Google Scholar 

  30. Oh, K.S.K., Lee, E., Han, S.S., Cho, S.H., Kim, D., Yuk, S.H.: Formation of core/shell nanoparticles with a lipid core and their application as a drug delivery system. Biomacromolecules 6, 1062–1067 (2005)

    Article  CAS  Google Scholar 

  31. Bhattacharya, A., Kankanala, K., Pal, S., Mukherjee, A.K.: A nimesulide derivative with potential anti-inflammatory activity: Synthesis, X-ray powder structure analysis and DFT study. J. Mol. Struct. 975, 40–46 (2010)

    Article  CAS  Google Scholar 

  32. Singh, B.K., Tripathi, M., Pandey, P.K., Kakkar, P.: Nimesulide aggravates redox imbalance and calcium dependent mitochondrial permeability transition leading to dysfunction in vitro. Toxicology 275, 1–9 (2010)

    Article  CAS  Google Scholar 

  33. Piel, G., Pirotte, B., Delneuville, I., Neven, P., Llabres, G., Delarge, J., Delattr, L.: Study of the influence of both cyclodextrins and l-lysine on the aqueous solubility of nimesulide; isolation and characterization of nimesulide–l-lysine–cyclodextrin complexes. J. Pharm. Sci. 86, 475–480 (1997)

    Article  CAS  Google Scholar 

  34. Joudieh, S., Lahiani-Skiba, M., Bon, P., Ba, O., Le Bretonb, J.M., Skiba, M.: Nimesulide apparent solubility enhancement with natural cyclodextrins and their polymers. Lett. Drug Des. Discov. 5, 406–415 (2008)

    Article  CAS  Google Scholar 

  35. Agrawal, S., Pancholi, S.S., Jain, N.K., Agrawal, G.P.: Hydrotropic solubilization of nimesulide for parenteral administration. Int. J. Pharm. 274, 149–155 (2004)

    Article  CAS  Google Scholar 

  36. Dutet, J., Lahiani-Skiba, M., Didier, L., Jezequel, S., Bounoure, F., Barbot, C., Arnaud, P., Skiba, M.: Nimesulide/cyclodextrin/PEG 6000 ternary complexes: Physico-chemical characterization, dissolution studies and bioavailability in rats. J. Inclusion Phenom. Macrocycl. Chem. 57, 203–209 (2007)

    Article  CAS  Google Scholar 

  37. Moneghini, M., Kikic, I., Perissutti, B., Franceschinis, E., Cortesi, A.: Characterisation of nimesulide–betacyclodextrins systems prepared by supercritical fluid impregnation. Eur. J. Pharm. Biopharm. 58, 637–644 (2004)

    Article  CAS  Google Scholar 

  38. Gaisford, S., Beezer, A.E., Mitchell, J.C.: Diode-array UV spectrometric evidence for cooperative interactions in binary mixtures of pluronics F77, F87, and F127. Langmuir 13, 2606–2607 (1997)

    Article  CAS  Google Scholar 

  39. Gaisford, S., Beezer, A.E., Mitchell, J.C., Loh, W., Finnie, J.K., Williams, S.J.: Diode array UV spectrometric evidence for a concentration dependent phase transition in dilute aqueous solutions of Pluronic F87 (Poloxamer 237). J. Chem. Soc. Chem. Commun. 18, 1843–1844 (1995)

    Article  Google Scholar 

  40. Alexandridis, P., Hatton, T.A.: Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling. Colloids Surf. A Physicochem. Eng. Aspects 96, 1–46 (1995)

    Article  CAS  Google Scholar 

  41. Goldmints, I., von Gottberg, F.K., Smith, K.A., Hatton, T.A.: Small-angle neutron scattering study of PEO–PPO–PEO micelle structure in the unimer-to-micelle transition region. Langmuir 13, 3659–3664 (1997)

    Article  CAS  Google Scholar 

  42. Wanka, G., Hoffmann, H., Ulbricht, W.: Phase diagrams and aggregation behavior of poly(oxyethylene)–poly(oxypropylene)–poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27, 4145–4159 (1994)

    Article  CAS  Google Scholar 

  43. Almgren, M., Bahadur, P., Jansson, M., Li, P., Brown, W., Bahadur, A.: Static and dynamic properties of a (PEO–PPO–PEO) block copolymer in aqueous solution. J. Colloid Interf. Sci. 151, 157–165 (1992)

    Article  CAS  Google Scholar 

  44. Kositza, M.J., Bohne, C., Alexandridis, P., Hatton, T.A., Holzwarth, J.F.: Micellization dynamics and impurity solubilization of the block-copolymer L64 in an aqueous solution. Langmuir 15, 322–325 (1999)

    Article  CAS  Google Scholar 

  45. Kadam, Y., Ganguly, R., Kumbhakar, M., Aswal, V.K., Hassan, P.A., Bahadur, P.: Time dependent sphere-to-rod growth of the pluronic micelles: Investigating the role of core and corona solvation in determining the micellar growth rate. J. Phys. Chem. B 113, 16296–16302 (2009)

    Article  CAS  Google Scholar 

  46. Wai, Z., Hao, J., Yuan, S., Li, Y., Juan, W., Sha, X., Fang, X.: Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: Formulation, optimization and in vitro characterization. Int. J. Pharm. 376, 176–185 (2009)

    Article  Google Scholar 

  47. Alexandridis, P., Holzwarth, J.F., Hatton, T.A.: Micellization of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association. Macromolecules 27, 2414–2425 (1994)

    Article  CAS  Google Scholar 

  48. Ma, J., Guo, C., Tang, Y., Liu, H.: 1H NMR spectroscopic investigations on the micellization and gelation of PEO–PPO–PEO block copolymers in aqueous solutions. Langmuir 23, 9596–9605 (2007)

    Article  CAS  Google Scholar 

  49. Álvarez-Ramírez, J.G., Fernández, V.V.A., Macías, E.R., Rharbi, Y., Taboada, P., Gámez-Corrales, R., Puig, J.E., Soltero, J.F.A.: Phase behavior of the Pluronic P103/water system in the dilute and semi-dilute regimes. J. Colloid Interface Sci. 333, 655–662 (2009)

    Article  Google Scholar 

  50. Ganguly, R., Choudhury, N., Aswal, V.K., Hassan, P.A.: Pluronic L64 micelles near cloud point: Investigating the role of micellar growth and interaction in critical concentration fluctuation and percolation. J. Phys. Chem. B 113, 668–675 (2009)

    Article  CAS  Google Scholar 

  51. Chiappetta, D.A., Sosnik, A.: Poly(ethylene oxide)–poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm. 66, 303–317 (2007)

    Article  CAS  Google Scholar 

  52. Al-Saden, A.A., Whateley, T.L., Florence, A.T.: Poloxamer association in aqueous solution. J. Colloid Interface Sci. 90, 303–309 (1982)

    Article  CAS  Google Scholar 

  53. Mata, J.P., Majhi, P.R., Guo, C., Liu, H.Z., Bahadur, P.: Concentration, temperature, and salt–induced micellization of a triblock copolymer Pluronic L64 in aqueous media. J. Colloid Interface Sci. 292, 548–556 (2005)

    Article  CAS  Google Scholar 

  54. DeWaterbeemd, H., Lennernas, H., Artursson, P. (eds.): Drug Bioavailability. Estimation of Solubility, Permeability, Absorption and Bioavailability, Wiley, Weinheim (2003)

  55. Bergstrom, C.A.S., Luthman, K., Artursson, P.: Accuracy of calculated pH-dependent aqueous drug solubility. Eur. J. Pharm. Sci. 22, 387–398 (2004)

    Article  CAS  Google Scholar 

  56. Gaucher, G., Satturwar, P., Jones, M., Furtos, A., Leroux, J.: Polymeric micelles for oral drug delivery. Eur. J. Pharma. Biopharm. 76, 147–158 (2010)

    Article  CAS  Google Scholar 

  57. Dellis, D., Giaginis, C., Kakoulidou, A.T.: Physicochemical profile of nimesulide: Exploring the interplay of lipophilicity, solubility and ionization. J. Pharm. Biomed. Anal. 44, 57–62 (2007)

    Article  CAS  Google Scholar 

  58. Desai, P.R., Jain, N.J., Sharma, R.K., Bahadur, P.: Effect of additives on the micellization of PEO/PPO/PEO block copolymer F127 in aqueous solution. Colloids Surf. A Physicochem. Eng. Aspects 178, 57–69 (2001)

    Article  CAS  Google Scholar 

  59. Alexdandridis, P., Olsson, U., Lindman, B.: A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 14, 2627–2638 (1998)

    Article  Google Scholar 

  60. Pandit, N., Trygstad, T., Croy, S., Bohorquez, M., Koch, C.: Effect of salts on the micellization, clouding, and solubilization behavior of Pluronic F127 solutions. J. Colloid Interface Sci. 222, 213–220 (2000)

    Article  CAS  Google Scholar 

  61. Momot, K.I., Kuchel, P.W., Chapman, B.E., Deo, P., Whittaker, D.: NMR study of the association of propofol with nonionic surfactants. Langmuir 19, 2088–2095 (2003)

    Article  CAS  Google Scholar 

  62. Hecht, E., Hoffmann, H.: Kinetic and calorimetric investigations on micelle formation of block copolymers of the poloxamer type. Colloids Surf. A Physicochem. Eng. Aspects 96, 181–197 (1995)

    Article  CAS  Google Scholar 

  63. Kadam, Y., Bharatiya, B., Hassan, P.A., Verma, G., Aswal, V.K., Bahadur, P.: Effect of an amphiphilic diol (Surfynol®) on the micellar characteristics of PEO–PPO–PEO block copolymers in aqueous solutions. Colloids Surf. A Physicochem. Eng. Aspects 363, 110–118 (2010)

    Article  CAS  Google Scholar 

  64. Suh, H., Jun, H.W.: Physicochemical and release studies of naproxen in poloxamer gels. Int. J. Pharm. 129, 13–20 (1996)

    Article  CAS  Google Scholar 

  65. Saito, Y., Kondo, Y., Abe, M., Sato, T.: Solubilization behavior of estriol in an aqueous solution of Pluronic L-64 as a function of concentration and temperature. Chem. Pharm. Bull. 42, 1348–1350 (1994)

    Article  CAS  Google Scholar 

  66. Saito, Y., Sato, T.: Effects of inorganic salts on solubilization of estriol in an aqueous solution of poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer. Drug Dev. Ind. Pharm. 24, 385–388 (1998)

    Article  CAS  Google Scholar 

  67. Su, Y.L., Wei, X.F., Liu, H.Z.: Effect of sodium chloride on association behavior of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) block copolymer in aqueous solutions. J. Colloid Interface Sci. 264, 526–531 (2003)

    Article  CAS  Google Scholar 

  68. Cheema, M.A., Taboada, P., Barbosa, S., Castro, E., Siddiq, M., Mosquera, V.: A comparative study of the thermodynamic properties at the air—water interface and in the bulk of structurally related phenothiazine drugs aqueous solutions. J. Chem. Thermodyn. 40, 298–308 (2008)

    Article  CAS  Google Scholar 

  69. Rosen, M.J.: Surfactant and Interfacial Phenomena, 3rd edn. Wiley, Hoboken (2004)

    Book  Google Scholar 

  70. Bhat, P.A., Rather, G.M., Dar, A.A.: Effect of surfactant mixing on partitioning of model hydrophobic drug, naproxen, between aqueous and micellar phases. J. Phys. Chem. B 113, 997–1006 (2009)

    Article  CAS  Google Scholar 

  71. Enache, M., Anghelache, I., Volanschi, E.: Coupled spectral and electrochemical evaluation of the anticancer drug mitoxantrone–sodium dodecyl sulfate interaction. Int. J. Pharm. 390, 100–106 (2010)

    Article  CAS  Google Scholar 

  72. Cudina, O., Rajic, K.K., Bugarcic, I.R., Jankovic, I.: Interaction of hydrochlorothiazide with cationic surfactant micelles of cetyltrimethylammonium bromide. Colloids Surf. A Physicochem. Eng. Aspects 256, 225–232 (2005)

    Article  CAS  Google Scholar 

  73. Liu, G.G., Roy, D., Rosen, M.J.: A simple method to estimate the surfactant micelle—water distribution coefficients of aromatic hydrocarbons. Langmuir 16, 3595–3605 (2000)

    Article  CAS  Google Scholar 

  74. Heindl, A., Strnad, J., Kohler, H–.H.: Effect of aromatic solubilizates on the shape of CTABr micelles. J. Phys. Chem. 97, 742–746 (1993)

    Article  CAS  Google Scholar 

  75. Siepmann, J., Peppas, N.A.: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 48, 139–157 (2001)

    Article  CAS  Google Scholar 

  76. Xiong, X.Y., Tam, K.C., Gan, L.H.: Release kinetics of hydrophobic and hydrophilic model drugs from pluronic F127/poly(lactic acid) nanoparticles. J. Control Release 103, 73–82 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the BRNS and GUJCOST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Parekh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parmar, A., Parekh, P. & Bahadur, P. Solubilization and Release of a Model Drug Nimesulide from PEO–PPO–PEO Block Copolymer Core–Shell Micelles: Effect of Size of PEO Blocks. J Solution Chem 42, 80–101 (2013). https://doi.org/10.1007/s10953-012-9949-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9949-6

Keywords

Navigation