Skip to main content
Log in

Potentiometric Study of Lanthanide Salicylaldimine Schiff Base Complexes

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Formation of complexes between the lanthanide ions and N,N′-bis(salicylidene)-4-methyl-1,3-phenylenediamine ligand was studied in solution by pH potentiometry. The potentiometric titration was performed at 25.00 °C in 0.1 mol·dm−3 NaClO4 ionic strength and in DMSO:water (30:70 v:v) solvent mixture. N,N′-bis(salicylidene)-4-methyl-1,3-phenylenediamine ligand (H2L) occurs in three forms: fully or partially deprotonated and unionized. Computer analysis of potentiometric data indicated that in solution the lanthanide (Ln) complexes exist as LnL2, Ln(HL)2 and Ln(H2L)2 species. This observation appears to be in contrast to the solid-state behavior of these complexes prepared in a self-assembly process and structurally defined. Stability constants for La3+, Eu3+, Gd3+, Tb3+, Ho3+ and Lu3+ (Ln3+) complexes were determined. The order of stabilities of LnL2 species in terms of metal ions is La3+ > Eu3+ ≈ Gd3+ = Tb3+ < Ho3+ < Lu3+ with a prominent “gadolinium break”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xie, W.: Formation and crystal structure of a polymeric La(H2salen) complex. Inorg. Chem. 38, 2541–2543 (1999)

    Article  CAS  Google Scholar 

  2. Gao, T., Yan, P.-F., Li, G.-M., Hou, G.-F., Gao, J.-S.: Ion size dominated 1D and 2D Salen lanthanide coordination complexes and their luminescence. Polyhedron 26, 5382–5388 (2007)

    Article  CAS  Google Scholar 

  3. Bullock, J., Tajmir-Riahi, H-A.: Schiff-base complexes of the lanthanoids and actinoids. Part 1. Lanthanoid(III) halide complexes with the un-ionized form of NN′-ethyl-enebis(salicylideneimine) and related bases. J. Chem. Soc. Dalton Trans. 1, 36–39 (1978)

    Google Scholar 

  4. Yang, X., Jones, R.A., Wong, W.-K.: Anion dependant self-assembly and the first X-ray structure of a neutral homoleptic lanthanide salen complex Tb4(salen)6. Chem. Commun. 28, 3266–3268 (2008)

    Article  Google Scholar 

  5. Yang, X., Jones, R.A.: Anion dependent self-assembly of “tetra-decker” and “triple-decker” luminescent Tb(III) salen complexes. J. Am. Soc. Chem. 127, 7686–7687 (2005)

    Article  CAS  Google Scholar 

  6. Lu, Z., Yuan, M., Pan, F., Gao, S., Zhang, D., Zhu, D.: Syntheses, crystal structures, and magnetic characterization of five new dimeric manganese(III) tetradentate Schiff base complexes exhibiting single-molecule–magnet behavior. Inorg. Chem. 45, 3538–3548 (2006)

    Article  Google Scholar 

  7. Rehman, W., Saman, F., Ahmad, I.: Synthesis, characterization, and biological study of some biologically potent Schiff base transition metal complexes. Russ. J. Coord. Chem. 34, 678–682 (2008)

    Article  CAS  Google Scholar 

  8. Cozzi, P.G.: Metal–salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 33, 410–421 (2004)

    Article  CAS  Google Scholar 

  9. Naeimi, H., Safari, J., Heidarnezhad, A.: Synthesis of Schiff base ligands derived from condensation of salicylaldehyde derivatives and synthetic diamine. Dyes Pigm. 73, 251–253 (2007)

    Article  CAS  Google Scholar 

  10. Eshtiagh-Hosseini, H., Housaindakht, M.R., Beyramabadi, S.A., Beheshti, S., Esmaeili, A.A., Khoshkholgh, M.J., Morsali, A.: Synthesis, experimental and theoretical characterization of tetra dentate N, N′-dipyridoxyl (1, 3-propylenediamine) salen ligand and its Co(III) complex. Spectrochim. Acta Part A 71, 1341–1347 (2008)

    Article  Google Scholar 

  11. Neelakantan, M.A., Rusalraj, F., Dharmaraja, J., Johnsonraja, S., Jeyakumar, T., Sankaranarayana Pillai, M.: Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes. Spectrochim. Acta Part A 71, 1599–1609 (2008)

    Article  CAS  Google Scholar 

  12. Rajabi, F.: A heterogeneous cobalt(II) Salen complex as an efficient and reusable catalyst for acetylation of alcohols and phenols. Tetrahedron Lett. 50, 395–397 (2009)

    Article  CAS  Google Scholar 

  13. Kleij, A.W.: Nonsymmetrical salen ligands and their complexes: Synthesis and applications. Eur. J. Inorg. Chem. 2, 193–205 (2009)

    Google Scholar 

  14. Lima, L.F., Corraza, M.L., Cardoza-Filho, L., Màrquez-Alvarez, H., Antunes, O.A.C.: Oxidation of limonene catalyzed by metal(salen) complexes. Braz. J. Chem. Eng. 23, 83–92 (2006)

    Article  CAS  Google Scholar 

  15. Papadopoulos, C., Kantiranis, N., Vecchio, S., Lalia-Kantouri, M.: Lanthanide complexes of 3-methoxy-salicylaldehyde thermal and kinetic investigation by simultaneous TG/DTG–DTA coupled with MS. J. Therm. Anal. Calorim. 99, 931–938 (2010)

    Article  CAS  Google Scholar 

  16. Benisvy, L., Kannappan, R., Song, Y-F., Milikisyants, S., Huber, M., Mutikainen, I., Turpeinen, V., Gamez, P., Bernasconi, L., Baerends, E.J., Hartl, F., Reedijk, J.: A square-planar nickel(II) monoradical complex with a bis(salicylidene)diamine ligand. Eur. J. Inorg. Chem. 5, 637–642 (2007)

    Google Scholar 

  17. He, J., Yin, Y.-G., Huang, X.-C., Li, D.: Solid structure and photoluminescence of zinc(II) multiplex with heptadentate salicylideneamine as primary ligand. Inorg. Chem. Commun. 9, 205–207 (2006)

    Article  CAS  Google Scholar 

  18. Chantarasini, N., Ruangpornvisuti, V., Munangsin, N., Detsen, H., Mananunsp, T., Batiya, C., Chaichit, N.: Structure and physico-chemical properties of hexadentate Schiff base zinc complexes derived from salicylaldehydes and triethylenetetramine. J. Mol. Struct. 701, 93–103 (2004)

    Article  Google Scholar 

  19. Howell, R.C., Spence, K.V.N., Kahwa, I.A., Williams, D.J.: Structure and luminescence of the neutral dinuclear lanthanide(III) complexes [{Ln(api)}2] {H3api = 2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine}. J. Chem. Soc. Dalton Trans. 16, 2727–2734 (1998)

    Google Scholar 

  20. Liu, Q., Meermann, C., Görlitzer, H.W., Runte, O., Herdtweck, E., Anwander, P.: Cationic rare-earth metal salen complexes. Dalton Trans. 44, 6170–6178 (2008)

    Google Scholar 

  21. Kaczmarek, M.T., Pospieszna-Markiewicz, I., Kubicki, M., Radecka-Paryzek, W.: Novel lanthanide salicyaldimine complexes with unusual coordination mode. Inorg. Chem. Commun. 7, 1247–1249 (2004)

    Article  CAS  Google Scholar 

  22. Radecka-Paryzek, W., Pospieszna-Markiewicz, I., Kubicki, M.: Self-assembled two-dimensional salicylaldimine lanthanum(III) nitrate coordination polymer. Inorg. Chim. Acta 360, 488–496 (2007)

    Article  CAS  Google Scholar 

  23. Kaczmarek, M.T., Kubicki, M., Radecka-Paryzek, W.: Self-assembly as a route to dinuclear lanthanide complexes with rare coordination pattern of salen-type ligand. Struct. Chem. 21, 779–786 (2010)

    Article  CAS  Google Scholar 

  24. Kaczmarek, M.T, Kubicki, M., Mondry, A., Janicki, R., Radecka-Paryzek, W.: Self-assembled lanthanide salicylaldimines with a unique coordination mode. Eur. J. Inorg. Chem. 14, 2193–2200 (2010)

    Google Scholar 

  25. Irving, M.H., Miles, M.G., Petit, L.D.: The stability constants of some metal chelates of triethylenetetraminehexaacetic acid (ttha). Anal. Chim. Acta 38, 475–488 (1967)

    Article  CAS  Google Scholar 

  26. Stańczak, P., Łuczkowski, M., Juszczyk, P., Grzonka, Z., Kozłowski, H.: Interactions of Cu2+ ions with chicken prion tandem repeats. Dalton Trans. 14, 2102–2107 (2004)

    Google Scholar 

  27. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)

    Article  CAS  Google Scholar 

  28. Ingri, N., Kakolowicz, W., Sillen, L.G., Warqvist, B.: High-speed computers as a supplement to graphical methods-V1: haltafall, a general program for calculating the composition of equilibrium mixtures. Talanta 14, 1261–1286 (1967)

    Article  CAS  Google Scholar 

  29. Łomozik, L., Jaskólski, M., Wojciechowska, A.: A multistage verification procedure for the selection of models in the studies of complex formation equilibria. Pol. J. Chem. 65, 1797–1807 (1991)

    Google Scholar 

  30. Alcock, N.W., Clase, H.J., Willey, G.R., Daly, L.T.: Packing of four independent molecules: 1-methyl-N, N’-bis(salicylidene)-2, 4-phenylenediamine. Acta Cryst. C52, 2340–2343 (1996)

    CAS  Google Scholar 

  31. Kaczmarek, M.T., Jastrząb, R., Hołderna-Kędzia, E., Radecka-Paryzek, W.: Self-assembled synthesis, characterization and antimicrobial activity of zinc(II) salicylaldimine complexes. Inorg. Chim. Acta 362, 3127–3133 (2009)

    Article  CAS  Google Scholar 

  32. Hernandez-Molina, R., Mederos A., Gili, P., Dominguez S., Lloret F., Cano J., Julve M., Ruiz-Prerz C., Solans X.: Dimer species in dimethyl sulfoxide–water (80:20 w/w) solution of N,N′-bis(salicylideneimine)-m-phenylenediamine (H2sal-m-phen) and similar Schiff bases with CuII, NiII, CoII and ZnII. Crystal structure of [Co2(sal-m-phen)2]·CHCl3. J. Chem. Soc., Dalton Trans. 22, 4327–4334 (1997)

    Google Scholar 

  33. Toraishi, T., Nagasaki, S., Tanaka, S.: Polynuclear complex formation of trivalent lanthanides by 5-sulfosalicylate in an aqueous system—Potentiometric, 1H NMR, and TRLIFS studies. Inorg. Chim. Acta 360, 15751583 (2007)

    Article  Google Scholar 

  34. Gałęzowska, J., Janicki, R., Mondry, A., Burgada, R., Bailly, T., Lecouvey, M., Kozłowski, H.: Coordination ability of trans-cyclohexane-1,2-diamine-N,N,N′,N′-tetrakis(methylenephosphonic acid) towards lanthanide(III) ions. J. Chem. Soc., Dalton Trans., 4384–4394 (2006)

  35. Dash, B.C., Tripathy, P.K., Kanungo, B.K.: Mixed chelates of some trivalent lanthanide ions containing (trans-1, 2-cyclohexylenedinitrilo)tetra-acetate and norleucinate. Monatsh. Chem. 122, 341–348 (1991)

    Article  CAS  Google Scholar 

  36. Pardeshi, R.K., Palaskar, N.G., Chondhekar, T.K.: Potentiometric study of lanthanide(III) ion complexes with some Schiff base. J. Indian Chem. Soc. 79, 958–959 (2002)

    CAS  Google Scholar 

  37. Pashchevskaya, N.V., Bolotin, S.N., Sokolov, M.E., Sklyar, A.A., Panyushkin, V.T.: Potentiometric study of reactions of rare-earth elements with 3-allylpentanedione in a water–dioxane medium. Russ. J. Gen. Chem. 76, 1011–1014 (2006)

    Article  CAS  Google Scholar 

  38. Mahalakshmi Sita, N.: Equilibrium studies of lanthanide(III) complexes of 1-phenyl-3-methyl-4-benzoyl pyrazolone-5 (BMBP) and 1-phenyl-3-methyl-trifluoroacetylpyrazolone-5 (PMTFP). Indian J. Chem. Sec. A, 36A, 118–120 (1997)

    Google Scholar 

  39. Spedding, F.H., Jones, K.C.: Heat capacities of aqueous rare earth chloride solution at 25°. J. Phys. Chem. 70, 2450–2455 (1966)

    Article  CAS  Google Scholar 

  40. Spedding, F.H., Csejka, D.A., DeKock, C.W.: Heat of dilution of aqueous rare earth chloride solution at 25°. J. Phys. Chem. 70, 2423–2429 (1966)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Polish Ministry of Science and Higher Education (Grant N N204 127 039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata T. Kaczmarek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaczmarek, M.T., Jastrząb, R. & Radecka-Paryzek, W. Potentiometric Study of Lanthanide Salicylaldimine Schiff Base Complexes. J Solution Chem 42, 18–26 (2013). https://doi.org/10.1007/s10953-012-9946-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9946-9

Keywords

Navigation