Skip to main content
Log in

Experimental and Theoretical Study of Two Pyridinium-Based Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Thermophysical properties of two pyridinium-based ionic liquids, 1-ethyl-2-methylpyridinium bis(trifluoromethylsulfonyl)imide and 1-propyl-2-methylpyridinium bis(trifluoromethylsulfonyl)imide, have been measured from 278.15 to 323.15 K, with a temperature step of 2.5 K. The properties measured were: densities, speeds of sound, refractive indices, surface tensions, isobaric molar heat capacities, electrical conductivities and viscosities. Thermal properties were also recorded in the temperature range from 100 to 320 K. From the experimental results coefficients of thermal expansion, isentropic compressibilities, molar refraction and surface enthalpies and entropies have been determined. Moreover, a theoretical study has been performed using ab initio calculations, level of theory HF/6-31G(d). From this study, we have obtained qualitative information about the magnitude and the directionality of the cation–anion interactions which allows a better understanding of the physico-chemical properties of these ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tokuda, H., Hayamizu, K., Ishii, K., Abu Bin Hasan Susan, M., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)

    Article  CAS  Google Scholar 

  2. Sun, H., Qiao, B., Zhang, D., Liu, C.: Structure of 1-butylpyridinium tetrafluoroborate ionic liquid: quantum chemistry and molecular dynamic simulation studies. J. Phys. Chem. A 114, 3990–3996 (2010)

    Article  CAS  Google Scholar 

  3. Rodriguez, H., Williams, M., Wilkes, J.S., Rogers, R.D.: Ionic liquids for liquid-in-glass thermometers. Green Chem. 10, 501–507 (2008)

    Article  CAS  Google Scholar 

  4. Rogers, R.D.: Materials science: reflections on ionic liquids. Nature 447, 917–918 (2007)

    Article  CAS  Google Scholar 

  5. Gardas, R.L., Coutinho, J.A.P.: Estimation of speed of sound of ionic liquids using surface tensions and densities: A volume based approach. Fluid Phase Equilib. 267, 188–192 (2008)

    Article  CAS  Google Scholar 

  6. Froeba, A.P., Kremer, H., Leipertz, A.: Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)(2)], and [OMA][NTf2] in dependence on temperature at atmospheric pressure. J. Phys. Chem. B 112, 12420–12430 (2008)

    Article  CAS  Google Scholar 

  7. Bandres, I., Royo, F.M., Gascon, I., Castro, M., Lafuente, C.: Anion influence on thermophysical properties of ionic liquids: 1-butylpyridinium tetrafluoroborate and 1-butylpyridinium triflate. J. Phys. Chem. B 114, 3601–3607 (2010)

    Article  CAS  Google Scholar 

  8. Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 109, 6103–6110 (2005)

    Article  CAS  Google Scholar 

  9. Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S.N.V.K., Brennecke, J.F.: Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 49, 954–964 (2004)

    Article  CAS  Google Scholar 

  10. Oliveira, F.S., Freire, M.C., Carvalho, P.I., Coutinho, J.A.P., Lopes, J.N.C., Rebelo, L.P.N., Marrucho, I.M.: Structural and positional isomerism influence in the physical properties of pyridinium NTf2-based ionic liquids: Pure and water-saturated mixtures. J. Chem. Eng. Data 55, 4514–4520 (2010)

    Article  CAS  Google Scholar 

  11. Brocos, P., Pineiro, A., Bravo, R., Amigo, A.: Refractive indices, molar volumes and molar refractions of binary liquid mixtures: Concepts and correlations. Phys. Chem. Chem. Phys. 5, 550–557 (2003)

    Article  CAS  Google Scholar 

  12. Bandres, I., Giner, B., Artigas, H., Royo, F.M., Lafuente, C.: Thermophysic comparative study of two isomeric pyridinium-based ionic liquids. J. Phys. Chem. B 112, 3077–3084 (2008)

    Article  CAS  Google Scholar 

  13. Tariq, M., Forte, P.A.S., Gomes, M.F.C., Lopes, J.N.C., Rebelo, L.P.N.: Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: Effect of temperature, alkyl chain length, and anion. J. Chem. Thermodyn. 41, 790–798 (2009)

    Article  CAS  Google Scholar 

  14. Guggenheim, E.A.: The principle of corresponding states. J. Chem. Phys. 13, 253–261 (1945)

    Article  CAS  Google Scholar 

  15. Law, G., Watson, P.R.: Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir 17, 6138–6141 (2001)

    Article  CAS  Google Scholar 

  16. Law, G., Watson, P.R.: Surface orientation in ionic liquids. Chem. Phys. Lett. 345, 1–4 (2001)

    Article  CAS  Google Scholar 

  17. Mousazadeh, M.H., Faramarzi, E.: Corresponding states theory for the prediction of surface tension of ionic liquids. Ionics 17, 217–222 (2011)

    Article  CAS  Google Scholar 

  18. Kolbeck, C., Cremer, T., Lovelock, K.R.J., Paape, N., Schulz, P.S., Wasserscheid, P., Maier, F., Steinrueck, H.: Influence of different anions on the surface composition of ionic liquids studied using ARXPS. J. Phys. Chem. B 113, 8682–8688 (2009)

    Article  CAS  Google Scholar 

  19. Freire, M.G., Carvalho, P.J., Fernandes, A.M., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tensions of imidazolium based ionic liquids: anion, cation, temperature and water effect. J. Colloid Interface Sci. 314, 621–630 (2007)

    Article  CAS  Google Scholar 

  20. Carvalho, P.J., Freire, M.G., Marrucho, I.M., Queimada, A.J., Coutinho, J.A.P.: Surface tensions for the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J. Chem. Eng. Data 53, 1346–1350 (2008)

    Article  CAS  Google Scholar 

  21. Aparicio, S., Atilhan, M., Karadas, F.: Thermophysical properties of pure ionic liquids: Review of present situation. Ind. Eng. Chem. Res. 49, 9580–9595 (2010)

    Article  CAS  Google Scholar 

  22. Gardas, R.L., Coutinho, J.A.P.: A group contribution method for heat capacity estimation of ionic liquids. Ind. Eng. Chem. Res. 47, 5751–5757 (2008)

    Article  CAS  Google Scholar 

  23. Shimizu, Y., Ohte, Y., Yamamura, Y., Saito, K.: Is the liquid or the solid phase responsible for the low melting points of ionic liquids? Alkyl-chain-length dependence of thermodynamic properties of [C(n)Mim][Tf2N]. Chem. Phys. Lett. 470, 295–299 (2009)

    Article  CAS  Google Scholar 

  24. Ngo, H.L., LeCompte, K., Hargens, L., McEwen, A.B.: Thermal properties of imidazolium ionic liquids. Thermochim. Acta 357, 97–102 (2000)

    Article  Google Scholar 

  25. Ojovan, M.I., Travis, K.P., Hand, R.J.: Thermodynamic parameters of bonds in glassy materials from viscosity–temperature relationships. J. Phys. Condens. Matter 19, 415107 (2007)

    Article  Google Scholar 

  26. Bandres, I., Montano, D.F., Gascon, I., Cea, P., Lafuente, C.: Study of the conductivity behavior of pyridinium-based ionic liquids. Electrochim. Acta 55, 2252–2257 (2010)

    Article  CAS  Google Scholar 

  27. Vila, J., Varela, L.M., Cabeza, O.: Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochim. Acta 52, 7413–7417 (2007)

    Article  CAS  Google Scholar 

  28. Bonhote, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K., Gratzel, M.: Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996)

    Article  CAS  Google Scholar 

  29. Pensado, A.S., Comunas, M.J.P., Fernandez, J.: The pressure-viscosity coefficient of several ionic liquids. Tribol. Lett. 31, 107–118 (2008)

    Article  CAS  Google Scholar 

  30. Tsuzuki, S., Tokuda, H., Hayamizu, K., Watanabe, M.: Magnitude and directionality of interaction in ion pairs of ionic liquids: Relationship with ionic conductivity. J. Phys. Chem. B 109, 16474–16481 (2005)

    Article  CAS  Google Scholar 

  31. Xuan, X., Guo, M., Pei, Y., Zheng, Y.: Theoretical study on cation-anion interaction and vibrational spectra of 1-allyl-3-methylimidazolium-based ionic liquids. Spectrochim Acta A Mol. Biomol. Spectrosc. 78, 1492–1499 (2011)

    Article  Google Scholar 

  32. Rees, R.J., Lane, G.H., Hollenkamp, A.F., Best, A.S.: Predicting properties of new ionic liquids: Density functional theory and experimental studies of tetra-alkylammonium salts of (thio)carboxylate anions, RCO2-, RCOS- and RCS2-. Phys. Chem. Chem. Phys. 13, 10729–10740 (2011)

    Article  CAS  Google Scholar 

  33. Fernandes, A.M., Rocha, M.A.A., Freire, M.G., Marrucho, I.M., Coutinho, J.A.P., Santos, L.M.N.B.F.: Evaluation of cation–anion interaction strength in ionic liquids. J. Phys. Chem. B 115, 4033–4041 (2011)

    Article  CAS  Google Scholar 

  34. Logothetit, G., Ramos, J., Economou, I.G.: Molecular modeling of imidazolium-based [tf2n-] ionic liquids: microscopic structure, thermodynamic and dynamic properties, and segmental dynamics. J. Phys. Chem. B 113, 7211–7224 (2009)

    Article  Google Scholar 

  35. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr, Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02, Gaussian Inc., Wallingford CT (2004)

Download references

Acknowledgments

Authors gratefully acknowledge financial support from Diputación General de Aragón y Universidad de Zaragoza (ref 23301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Lafuente.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Mardones, M., Bandrés, I., López, M.C. et al. Experimental and Theoretical Study of Two Pyridinium-Based Ionic Liquids. J Solution Chem 41, 1836–1852 (2012). https://doi.org/10.1007/s10953-012-9906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9906-4

Keywords

Navigation