Skip to main content
Log in

Formation and Stability of Binary Complexes of Divalent Ecotoxic Ions (Ni, Cu, Zn, Cd, Pb) with Biodegradable Aminopolycarboxylate Chelants (dl-2-(2-Carboxymethyl)Nitrilotriacetic Acid, GLDA, and 3-Hydroxy-2,2′-Iminodisuccinic Acid, HIDS) in Aqueous Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The protonation and complex formation equilibria of two biodegradable aminopolycarboxylate chelants {dl-2-(2-carboxymethyl)nitrilotriacetic acid (GLDA) and 3-hydroxy-2,2′-iminodisuccinic acid (HIDS)} with Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ ions were investigated using the potentiometric method at a constant ionic strength of I = 0.10 mol·dm−3 (KCl) in aqueous solutions at 25 ± 0.1 °C. The stability constants of the proton–chelant and metal–chelant species for each metal ion were determined, and the concentration distributions of various complex species in solution were evaluated for each ion. The stability constants (log10 K ML) of the complexes containing Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ ions followed the identical order of log10 K CuL > log10 K NiL > log10 K PbL > log10 K ZnL > log10 K CdL for either GLDA (13.03 > 12.74 > 11.60 > 11.52 > 10.31) or HIDS (12.63 > 11.30 > 10.21 > 9.76 > 7.58). In each case, the constants obtained for metal–GLDA complexes were larger than the corresponding constants for metal–HIDS complexes. The conditional stability constants (log10 \( K_{\text{ML}}^{'} \)) of the metal–chelant complexes containing GLDA and HIDS were calculated in terms of pH, and compared with the stability constants for EDTA and other biodegradable chelants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Conway, M., Holoman, S., Jones, L., Leenhouts, R., Williamson, G.: Selecting and using chelating agents. Chem. Eng. 106, 86–90 (1999)

    CAS  Google Scholar 

  2. Nowack, B., VanBriesen, J.M.: Chelating agents in the environment. In: Nowack, B., VanBriesen, J.M. (eds.) Biogeochemistry of Chelating Agents, pp. 1–18. American Chemical Society, Washington, DC (2005)

    Chapter  Google Scholar 

  3. Raghavan, R., Coles, E., Dietz, D.: Cleaning excavated soil using extraction agents: a state-of-the-art review. J. Hazard. Mater. 26, 81–87 (1991)

    Article  Google Scholar 

  4. Peters, R.W.: Chelant extraction of heavy metals from contaminated soils. J. Hazard. Mater. 66, 151–210 (1999)

    Article  CAS  Google Scholar 

  5. Chang, F.-C., Lo, S.-L., Ko, C.-H.: Recovery of copper and chelating agents from sludge extracting solutions. Sep. Purif. Technol. 53, 49–56 (2007)

    Article  CAS  Google Scholar 

  6. Leštan, D., Luo, C.L., Li, X.D.: The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ. Pollut. 153, 3–13 (2008)

    Article  Google Scholar 

  7. Hasegawa, H., Rahman, I.M.M., Kinoshita, S., Maki, T., Furusho, Y.: Non-destructive separation of metal ions from wastewater containing excess aminopolycarboxylate chelant in solution with an ion-selective immobilized macrocyclic material. Chemosphere 79, 193–198 (2010)

    Article  CAS  Google Scholar 

  8. Rahman, I.M.M., Hossain, M.M., Begum, Z.A., Rahman, M.A., Hasegawa, H.: Eco-environmental consequences associated with chelant-assisted phytoremediation of metal-contaminated soil. In: Golubev, I.A. (ed.) Handbook of Phytoremediation, pp. 709–722. Nova Science Publishers, Inc., New York (2011)

    Google Scholar 

  9. Egli, T.: Biodegradation of metal-complexing aminopolycarboxylic acids. J. Biosci. Bioeng. 92, 89–97 (2001)

    CAS  Google Scholar 

  10. Nowack, B.: Environmental chemistry of aminopolycarboxylate chelating agents. Environ. Sci. Technol. 36, 4009–4016 (2002)

    Article  CAS  Google Scholar 

  11. Nörtemann, B.: Biodegradation of chelating agents: EDTA, DTPA, PDTA, NTA, and EDDS. In: Nowack, B., VanBriesen, J.M. (eds.) Biogeochemistry of Chelating Agents, pp. 150–170. American Chemical Society, Washington, DC (2005)

    Chapter  Google Scholar 

  12. Sillanpää, M., Oikari, A.: Assessing the impact of complexation by EDTA and DTPA on heavy metal toxicity using microtox bioassay. Chemosphere 32, 1485–1497 (1996)

    Article  Google Scholar 

  13. Sorvari, J., Sillanpää, M.: Influence of metal complex formation on heavy metal and free EDTA and DTPA acute toxicity determined by Daphnia magna. Chemosphere 33, 1119–1127 (1996)

    Article  CAS  Google Scholar 

  14. Horstmann, U., Gelpke, N.: Algal growth stimulation by chelatisation risks associated with complexants in P-free washing agents. Rev. Int. Oceanogr. Med. 260, 101–104 (1991)

    Google Scholar 

  15. Hering, J.G., Morel, F.M.M.: Kinetics of trace metal complexation: role of alkaline-earth metals. Environ. Sci. Technol. 22, 1469–1478 (2002)

    Article  Google Scholar 

  16. van Ginkel, C.G., Geerts, R.: Full-scale biological treatment of industrial effluents containing EDTA. In: Nowack, B., VanBriesen, J.M. (eds.) Biogeochemistry of Chelating Agents, pp. 195–203. American Chemical Society, Washington, DC (2005)

    Chapter  Google Scholar 

  17. Grundler, O.J., van der Steen, A.T.M., Wilmot, J.: Overview of the European risk assessment on EDTA. In: Nowack, B., VanBriesen, J.M. (eds.) Biogeochemistry of Chelating Agents, pp. 336–347. American Chemical Society, Washington, DC (2005)

    Chapter  Google Scholar 

  18. Hasegawa, H., Rahman, I.M.M., Nakano, M., Begum, Z.A., Egawa, Y., Maki, T., Furusho, Y., Mizutani, S.: Recovery of toxic metal ions from washing effluent containing excess aminopolycarboxylate chelant in solution. Water Res. 45, 4844–4854 (2011)

    Article  CAS  Google Scholar 

  19. Sillanpää, M.E.T., Agustiono Kurniawan, T., Lo, W.-H.: Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP). Chemosphere 83, 1443–1460 (2011)

    Article  Google Scholar 

  20. Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R., Nowack, B.: Extraction of heavy metals from soils using biodegradable chelating agents. Environ. Sci. Technol. 38, 937–944 (2004)

    Article  CAS  Google Scholar 

  21. Zhang, L., Zhu, Z., Zhang, R., Zheng, C., Zhang, H., Qiu, Y., Zhao, J.: Extraction of copper from sewage sludge using biodegradable chelant EDDS. J. Environ. Sci. 20, 970–974 (2008)

    Article  CAS  Google Scholar 

  22. Tandy, S., Healey, J.R., Nason, M.A., Williamson, J.C., Jones, D.L.: Remediation of metal polluted mine soil with compost: co-composting versus incorporation. Environ. Pollut. 157, 690–697 (2009)

    Article  CAS  Google Scholar 

  23. Nowack, B., Schulin, R., Robinson, B.H.: Critical assessment of chelant-enhanced metal phytoextraction. Environ. Sci. Technol. 40, 5225–5232 (2006)

    Article  CAS  Google Scholar 

  24. Quartacci, M.F., Irtelli, B., Baker, A.J.M., Navari-Izzo, F.: The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere 68, 1920–1928 (2007)

    Article  CAS  Google Scholar 

  25. Martell, A.E., Smith, R.M., Motekaitis, R.J.: NIST Critically Selected Stability Constants of Metal Complexes Database. Texas A&M University, College Station (2004)

    Google Scholar 

  26. Pihko, P.M., Rissa, T.K., Aksela, R.: Enantiospecific synthesis of isomers of AES, a new environmentally friendly chelating agent. Tetrahedron 60, 10949–10954 (2004)

    Article  CAS  Google Scholar 

  27. Martins, J.O.G., Barros, M.T., Pinto, R.M., Soares, H.M.V.M.: Cadmium(II), lead(II), and zinc(II) ions coordination of N,N′-(S,S)bis[1-carboxy-2-(imidazol-4yl)ethyl]ethylenediamine: equilibrium and structural studies. J. Chem. Eng. Data 56, 398–405 (2011)

    Article  CAS  Google Scholar 

  28. Sari, H., Can, M., Macit, M.: Potentiometric and theoretical studies of stability constants of glyoxime derivatives and their nickel, copper, cobalt and zinc complexes. Acta Chim. Slov. 52, 317–322 (2005)

    CAS  Google Scholar 

  29. El-Sherif, A.A., Shoukry, M.M., van Eldik, R.: Complex-formation reactions and stability constants for mixed-ligand complexes of diaqua(2-picolylamine)palladium(II) with some bio-relevant ligands. Dalton Trans., 1425–1432 (2003)

  30. Dissolvine® GL Technichal Brochure. Akzo Nobel Amsterdam, The Netherlands (2004)

  31. Biodegradable Chelating Agent: HIDS. Nippon Shokubai, Osaka (2008)

    Google Scholar 

  32. Gans, P., O’Sullivan, B.: GLEE, a new computer program for glass electrode calibration. Talanta 51, 33–37 (2000)

    Article  CAS  Google Scholar 

  33. Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)

    Article  CAS  Google Scholar 

  34. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)

    Article  CAS  Google Scholar 

  35. Ichikawa, T., Sawada, K.: Protonation behavior and intramolecular interactions of α, ω-alkanediaminepolymethylenepolyphosphonates. Bull. Chem. Soc. Jpn. 70, 829–835 (1997)

    Article  CAS  Google Scholar 

  36. Sanna, D., Bodi, I., Bouhsina, S., Micera, G., Kiss, T.: Oxovanadium(IV) complexes of phosphonic derivatives of iminodiacetic and nitrilotriacetic acids. J. Chem. Soc. Dalton Trans., 3275–3282 (1999)

  37. Sawada, K., Duan, W., Ono, M., Satoh, K.: Stability and structure of nitrilo(acetate-methylphosphonate) complexes of the alkaline-earth and divalent transition metal ions in aqueous solution. J. Chem. Soc. Dalton Trans., 919–924 (2000)

  38. Popov, K., Niskanen, E., Ronkkomaki, H.J., Lajunen, L.: 31P NMR study of organophosphonate protonation equilibrium at high pH. New J. Chem. 23, 1209–1213 (1999)

    Article  CAS  Google Scholar 

  39. Buglyó, P., Kiss, T., Dyba, M., Jezowska-Bojczuk, M., Kozlowski, H., Bouhsina, S.: Complexes of aminophosphonates–10. Copper(II) complexes of phosphonic derivatives of iminodiacetate and nitrilotriacetate. Polyhedron 16, 3447–3454 (1997)

    Article  Google Scholar 

  40. Angkawijaya, A.E., Fazary, A.E., Hernowo, E., Taha, M., Ju, Y.-H.: Iron(III), chromium(III), and copper(II) complexes of l-norvaline and ferulic acid. J. Chem. Eng. Data 56, 532–540 (2011)

    Article  CAS  Google Scholar 

  41. Ringbom, A.: Complexation in Analytical Chemistry. Interscience Publishers, New York (1963)

    Google Scholar 

  42. Bell, C.F.: Principles and Applications of Metal Chelation. Clarendon Press, Oxford (1977)

    Google Scholar 

  43. Irving, H., Williams, R.J.P.: The stability of transition-metal complexes. J. Chem. Soc., 3192–3210 (1953)

  44. Motekaitis, R.J., Martell, A.E.: Potentiometry of mixtures: metal chelate stability constants of 1-hydroxy-3-oxapentane-1,2,4,5-tetracarboxylic acid and 3,6-dioxaoctane-1,2,4,5,7,8-hexacarboxylic acid. Inorg. Chem. 28, 3499–3503 (1989)

    Article  CAS  Google Scholar 

  45. Martell, A.E., Hancock, R.D.: Metal Complexes in Aqueous Solutions. Plenum Press, New York (1996)

    Google Scholar 

  46. Davidge, J., Thomas, C.P., Williams, D.R.: Conditional formation constants or chemical speciation data? Chem. Spec. Bioavail. 13, 129–134 (2001)

    Article  CAS  Google Scholar 

  47. Baes, C.F., Messmer, R.E.: The Hydrolysis of Cations. Wiley Interscience, New York (1976)

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Grants-in-Aid for Scientific Research (K22042) from the Ministry of the Environment, Japan. We thank Professor Peter Gans for his assistance with the HYPERQUAD software. Additionally, the authors (ZAB and IMMR) wish to thank Professor Muhammad Habibullah and Professor Benu Kumar Dey (Department of Chemistry, University of Chittagong, Bangladesh) for their useful comments and suggestions regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zinnat A. Begum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Begum, Z.A., Rahman, I.M.M., Tate, Y. et al. Formation and Stability of Binary Complexes of Divalent Ecotoxic Ions (Ni, Cu, Zn, Cd, Pb) with Biodegradable Aminopolycarboxylate Chelants (dl-2-(2-Carboxymethyl)Nitrilotriacetic Acid, GLDA, and 3-Hydroxy-2,2′-Iminodisuccinic Acid, HIDS) in Aqueous Solutions. J Solution Chem 41, 1713–1728 (2012). https://doi.org/10.1007/s10953-012-9901-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9901-9

Keywords

Navigation