Skip to main content
Log in

Combined Theoretical and Experimental Study of the Complexation of a Hexaarylbenzene-Based Receptor with the Potassium Cation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this study, non-covalent binding interactions of the hexaarylbenzene-based receptor (R) with the potassium cation have been investigated. Employing quantum mechanical density functional theory calculations, the most probable structure of the KR + complex species was predicted. In this complex, the K+ cation synergistically interacts with the polar ethereal oxygen fence and with the central hydrophobic benzene bottom via cation–π interaction. The strength of the KR + complex was evaluated experimentally by affinity capillary electrophoresis. From the dependence of the effective electrophoretic mobility of the receptor R on the concentration of the potassium ion in the background electrolyte, the thermodynamic binding (stability, association) constant (K KR) of the KR + complex in methanol was evaluated as log10 K KR = 3.20 ± 0.22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Watson, M.D., Fechtenkotter, A., Mullen, K.: Big is beautiful—”Aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem. Rev. 101, 1267–1300 (2001)

    Article  CAS  Google Scholar 

  2. Rathore, R., Burns, C.L.: A practical one-pot synthesis of soluble hexa-peri-hexabenzocoronene and isolation of its cation-radical salt. J. Org. Chem. 68, 4071–4074 (2003)

    Article  CAS  Google Scholar 

  3. Petty, M.C., Bryce, M.R., Bloor, D.: Introduction to Molecular Electronics. University Press, New York (1995)

    Google Scholar 

  4. Maiya, B.G., Ramasarma, T.: DNA, a molecular wire or not—the debate continues. Curr. Sci. 80, 1523–1530 (2001)

    CAS  Google Scholar 

  5. Shukla, R., Lindeman, S.V., Rathore, R.: A polyaromatic receptor with an ethereal fence that directs K+ for effective cation-pi interaction. J. Am. Chem. Soc. 128, 5328–5329 (2006)

    Article  CAS  Google Scholar 

  6. Shukla, R., Lindeman, S.V., Rathore, R.: Electron transfer prompted ejection of a tightly bound K+ from the ethereal cavity of a hexaarylbenzene-based receptor. Org. Lett. 9, 1291–1294 (2007)

    Article  CAS  Google Scholar 

  7. Chen, Z., Weber, S.G.: Determination of binding constants by affinity capillary electrophoresis, electrospray ionization mass spectrometry and phase-distribution methods. Trends Anal. Chem. 27, 738–748 (2008)

    Article  CAS  Google Scholar 

  8. Winzor, D.J.: Determination of binding constants by analogous procedures in size exclusion chromatography and capillary electrophoresis. Anal. Biochem. 383, 1–17 (2008)

    Article  CAS  Google Scholar 

  9. Liu, X.J., Dahdouh, F., Salgado, M., Gomez, F.A.: Recent advances in affinity capillary electrophoresis (2007). J. Pharm. Sci. 98, 394–410 (2009)

    Article  CAS  Google Scholar 

  10. Pacáková, V., Štulík, K., Hubená, S., Tichá, M.: Affinity capillary electrophoresis. Chem. Listy 94, 97–104 (2000)

    Google Scholar 

  11. Tanaka, Y., Terabe, S.: Estimation of binding constants by capillary electrophoresis. J. Chromatogr. B 768, 81–92 (2002)

    Article  CAS  Google Scholar 

  12. Neubert, R.H.H., Ruttinger, H.H.: Affinity Capillary Electrophoresis in Pharmaceutics and Biopharmaceutics. Marcel Dekker, New York (2003)

    Book  Google Scholar 

  13. Heegaard, N.H.H.: Affinity in electrophoresis. Electrophoresis 30, S229–S239 (2009)

    Article  Google Scholar 

  14. Jiang, C.X., Armstrong, D.W.: Use of CE for the determination of binding constants. Electrophoresis 31, 17–27 (2010)

    Article  CAS  Google Scholar 

  15. Ehala, S., Rathore, R., Makrlík, E., Toman, P., Kašička, V.: Affinity capillary electrophoretic study of K+/Na+ selectivity of hexaarylbenzene-based polyaromatic receptor. Proc. Chem. 2, 14–19 (2010)

    Article  CAS  Google Scholar 

  16. Kašička, V., Prusík, Z., Sázelová, P., Brynda, E., Stejskal, J.: Capillary zone electrophoresis with electroosmotic flow controlled by external radial electric field. Electrophoresis 20, 2484–2492 (1999)

    Article  Google Scholar 

  17. Porras, S.P., Riekkola, M.L., Kenndler, E.: Capillary zone electrophoresis of basic analytes in methanol as non-aqueous solvent—mobility and ionisation constant. J. Chromatogr. A 905, 259–268 (2001)

    Article  CAS  Google Scholar 

  18. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision C.02. Gaussian Inc, Wallingford CT (2004)

  19. Kříž, J., Dybal, J., Makrlík, E.: Valinomycin–proton interaction low-polarity media. Biopolymers 82, 536–548 (2006)

    Article  Google Scholar 

  20. Kříž, J., Dybal, J., Makrlík, E., Vaňura, P., Lang, J.: A proton complex of p-tert-butylcalix[4]arene-tetrakis (N, N-dimethylthioacetamide): NMR evidence and probable structure. Supramol. Chem. 19, 419–424 (2007)

    Article  Google Scholar 

  21. Kříž, J., Dybal, J., Makrlík, E., Vaňura, P.: Experimental evidence for unusual protonation of tetraethyl p-tert-butylcalix[4]arene tetraacetate and the most probable structure of the resulting complex. Supramol. Chem. 20, 387–395 (2008)

    Article  Google Scholar 

  22. Kříž, J., Dybal, J., Makrlík, E., Budka, J., Vaňura, P.: Protonation of tetrapropoxy-4-tert-butylcalix[4]arene: NMR study of interaction and probable structures of the product. Supramol. Chem. 20, 487–494 (2008)

    Article  Google Scholar 

  23. Kříž, J., Dybal, J., Makrlík, E., Budka, J.: Interaction of hydronium ion with dibenzo-18-crown-6: NMR, IR, and theoretical study. J. Phys. Chem. A 112, 10236–10243 (2008)

    Article  Google Scholar 

  24. Kříž, J., Dybal, J., Makrlík, E., Budka, J., Vaňura, P.: Interaction of hydrated protons with trioctylphosphine oxide: NMR and theoretical study. J. Phys. Chem. A 113, 5896–5905 (2009)

    Article  Google Scholar 

  25. Kříž, J., Toman, P., Makrlík, E., Budka, J., Shukla, R., Rathore, R.: Cooperative interaction of hydronium ion with an ethereally fenced hexaarylbenzene-based receptor: an NMR and theoretical study. J. Phys. Chem. A 114, 5327–5334 (2010)

    Google Scholar 

  26. Ma, J.C., Dougherty, D.A.: The cation-pi interaction. Chem. Rev. 97, 1303–1324 (1997)

    Article  CAS  Google Scholar 

  27. Sakurai, K., Mizuno, T., Hiroaki, H., Gohda, K., Oku, J., Tanaka, T.: High thermal stability imparted by a designed tandem Arg-Trp stretch in an alpha-helical coiled coil. Angew. Chem. Int. Ed. Engl. 44, 6180–6183 (2005)

    Article  CAS  Google Scholar 

  28. Boys, S.F., Bernardi, F.: Calculation of small molecular interactions by differences of separate total energies—some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  CAS  Google Scholar 

  29. Van Duijneveldt, F.B., Van Duijneveldt-van de Rijdt, J.G.C.M., Vanlenthe, J.H.: State-of-the-art in counterpoise theory. Chem. Rev. 94, 1873–1885 (1994)

    Article  Google Scholar 

  30. Hobza, P., Šponer, J.: Structure, energetics, and dynamics of the nucleic acid base pairs: Nonempirical ab initio calculations. Chem. Rev. 99, 3247–3276 (1999)

    Article  CAS  Google Scholar 

  31. Chalasinski, G., Szczesniak, M.M.: Origins of structure and energetics of van-der-Waals clusters from ab initio calculations. Chem. Rev. 94, 1723–1765 (1994)

    Article  CAS  Google Scholar 

  32. Barsky, D., Colvin, M.E.: Guanine–cytosine base pairs in parallel-stranded DNA: An ab initio study of the keto-amino wobble pair versus the enol–imino minor tautomer pair. J. Phys. Chem. A 104, 8570–8576 (2000)

    Article  CAS  Google Scholar 

  33. Ehala, S., Dybal, J., Makrlík, E., Kašička, V.: Application of capillary affinity electrophoresis and density functional theory to the investigation of valinomycin–lithium complex. J. Chromatogr. A 1216, 3660–3665 (2009)

    Article  CAS  Google Scholar 

  34. Papanastasiou, G.E., Ziogas, I.I.: Physical behavior of some reaction media. 3. Density, viscosity, dielectric-constant, and refractive-index changes of methanol + dioxane mixtures at several temperatures. J. Chem. Eng. Data 37, 167–172 (1992)

    Article  CAS  Google Scholar 

  35. Peng, X.J., Bowser, M.T., Britz-McKibbin, P., Bebault, G.M., Morris, J.R., Chen, D.D.Y.: Quantitative description of analyte migration behavior based on dynamic complexation in capillary electrophoresis with one or more additives. Electrophoresis 18, 706–716 (1997)

    Article  CAS  Google Scholar 

  36. Bowser, M.T., Kranack, A.R., Chen, D.D.Y.: Properties of multivariate binding isotherms in capillary electrophoresis. Anal. Chem. 70, 1076–1084 (1998)

    Article  CAS  Google Scholar 

  37. Kay, R.L.: An application of the Fuoss–Onsager conductance theory to the alkali halides in several solvents. J. Am. Chem. Soc. 82, 2099–2105 (1960)

    Article  CAS  Google Scholar 

  38. Ehala, S., Marklík, E., Toman, P., Kašička, V.: ACE applied to the quantitative characterization of benzo-18-crown-6-ether binding with alkali metal ions in a methanol–water solvent system. Electrophoresis 31, 702–708 (2010)

    Article  CAS  Google Scholar 

  39. Takayanagi, T., Manege, L.C., Motomizu, S.: Equilibrium analysis of crown ether complexes by capillary zone electrophoresis. J. Microcolumn Sep. 12, 113–119 (2000)

    Article  CAS  Google Scholar 

  40. Katsuta, S., Tachibana, H., Takeda, Y.: Stabilities in water of alkali metal ion complexes with dibenzo-24-crown-8 and dibenzo-18-crown-6 and their transfer activity coefficients from water to nonaqueous solvents. J. Solution Chem. 31, 499–510 (2002)

    Article  CAS  Google Scholar 

  41. Okada, T., Quraishi, S.B.: Chromatographic determination of Gibbs free energy of transfer for crown ether and monodispersed polyoxyethylene complexes with alkali cations from methanol to acetonitrile. Phys. Chem. Chem. Phys. 2, 5624–5629 (2000)

    Article  CAS  Google Scholar 

  42. Ercolani, G., Mandolini, L., Masci, B.: Association of alkali and alkaline-earth cations with benzo-18-crown-6 and its neutral and negatively charged acyclic analogs in methanol solution. J. Am. Chem. Soc. 103, 7484–7489 (1981)

    Article  CAS  Google Scholar 

  43. Frensdor, H.K.: Stability constants of cyclic polyether complexes with univalent cations. J. Am. Chem. Soc. 93, 600–606 (1971)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation, Grants Nos. 203/08/1428, 203/09/0675 and P205/10/2280; by the Research Project No. AV0Z40550506 of the Academy of Sciences of the Czech Republic, by the Ministry of Education, Youth and Sports of the Czech Republic, Project No. MSM6383917201 and by the Grant Agency of Faculty of Enviromental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 “Environmental Aspects of Sustainable Development of Society”. R.R. thanks the National Science Foundation for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Kašička.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehala, S., Toman, P., Makrlík, E. et al. Combined Theoretical and Experimental Study of the Complexation of a Hexaarylbenzene-Based Receptor with the Potassium Cation. J Solution Chem 41, 1812–1824 (2012). https://doi.org/10.1007/s10953-012-9896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9896-2

Keywords

Navigation