Skip to main content
Log in

Liquid–Liquid Equilibria of Some Aliphatic Alcohols + Disodium Hydrogen Citrate + Water Ternary Systems at 298.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the liquid–liquid equilibria for 1-propanol, 2-propanol or 2-methyl-2-propanol + disodium hydrogen citrate aqueous two-phase systems at 298.15 K were studied. The experimental binodal curves at 298.15 K are reported, and the parameters of the Merchuk equation, modified as a nonlinear function of mixed solvent properties and used for the simultaneous correlation of the experimental binodal data. Moreover, the salting-out ability of different salts and different alcohols with different anions is discussed. Additionally, experimental tie-line data are reported at 298.15 K. The generalized electrolyte-NRTL model of the mixed solvent electrolyte systems (e-NRTL) satisfactorily used for the correlation of the tie-line compositions; restricted binary interaction parameters were also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Greve, A., Kula, M.R.: Recycling of salt from the primary bottom phase: a protein extraction process. J. Chem. Technol. Biotechnol. 50, 27–42 (1991)

    CAS  Google Scholar 

  2. Gomis, V., Ruiz, F., Vera, G.D., Lopez, E., Saquete, M.D.: Liquid–liquid–solid equilibria for the ternary systems water–sodium chloride or potassium chloride–1-propanol or 2-propanol. Fluid Phase Equilib. 98, 141–147 (1994)

    Article  CAS  Google Scholar 

  3. Taboada, M.E.: Liquid–liquid and solid–liquid equilibrium of the 1-propanol + lithium sulfate + water system at 25, 35 and 45 °C. Fluid Phase Equilib. 204, 155–165 (2003)

    Article  CAS  Google Scholar 

  4. Hu, M., Zhai, Q., Jiang, Y., Liu, Z.J.: Solid–liquid phase equilibria of some aliphatic alcohols + cesium sulfate + water. J. Chem. Eng. Data 49, 1070–1073 (2004)

    Article  CAS  Google Scholar 

  5. Chou, T.J., Tanioka, A.: Salting effect on the liquid–liquid equilibria for the partially miscible systems of n-propanol–water and i-propanol–water. Ind. Eng. Chem. Res. 37, 2039–2044 (1998)

    Article  CAS  Google Scholar 

  6. Zafarani-Moattar, M.T., Banisaeid, S., Beirami, M.A.S.: Phase diagrams of some aliphatic alcohols + potassium or sodium citrate + water at 25 °C. J. Chem. Eng. Data 50, 1409–1413 (2005)

    Article  CAS  Google Scholar 

  7. Salabat, A., Hashemi, M.: Temperature effect on the liquid–liquid equilibria for some aliphatic alcohols + water + K2CO3 systems. J. Chem. Eng. Data 51, 1194–1197 (2006)

    Article  CAS  Google Scholar 

  8. Shekaari, H., Sadeghi, R., Jafari, S.A.: Liquid–liquid equilibria for aliphatic alcohols + dipotassium oxalate + water. J. Chem. Eng. Data 55, 4586–4591 (2010)

    Article  CAS  Google Scholar 

  9. Yan-Min, L., Yan-Zhao, Y., Xi-Dan, Z., Chuan, B.X.: Bovine serum albumin partitioning in polyethylene glycol (PEG)/potassium citrate aqueous two-phase systems. Food Bioprod. Process. 88, 40–46 (2010)

    Article  Google Scholar 

  10. Perumalsamy, M., Murugesan, T.: Partition behavior of bovine serum albumin in PEG2000–sodium citrate–water based aqueous two-phase system. Sep. Sci. Technol. 42, 2049–2065 (2007)

    Article  CAS  Google Scholar 

  11. Azevedo, A.M., Gomes, A.G., Rosa, P.A.J., Ferreira, I.F., Pisco, A.M.M.O., Aires-Barros, M.R.: Partitioning of human antibodies in polyethylene glycol–sodium citrate aqueous two-phase systems. Sep. Purif. Technol. 65, 14–21 (2009)

    Article  CAS  Google Scholar 

  12. Boaglio, A., Bassani, G., Picó, G., Nerli, B.: Features of the milk whey protein partitioning in polyethyleneglycol–sodium citrate aqueous two-phase systems with the goal of isolating human alpha-1 antitrypsin expressed in bovine milk. J. Chromatogr. B 837, 18–23 (2006)

    Article  CAS  Google Scholar 

  13. Huddleston, J.G., Lyddiatt, A.: Aqueous two-phase systems in biochemical recovery. Systematic analysis, design, and implementation of practical processes for the recovery of protein. Appl. Biochem. Biotechnol. 26, 249–279 (1990)

    Article  CAS  Google Scholar 

  14. Merchuk, J.C., Andrews, B.A., Asenjo, J.A.: Aqueous two-phase systems for protein separation: studies on phase inversion. J. Chromatogr. B 711, 285–293 (1998)

    Article  CAS  Google Scholar 

  15. Chen, C.C., Song, Y.: Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems. AIChE J. 50, 1928–1941 (2004)

    Article  CAS  Google Scholar 

  16. Zafarani-Moattar, M.T., Hamzehzadeh, S.: Effect of pH on the phase separation in the ternary aqueous system containing the hydrophilic ionic liquid 1-butyl-3 methylimidazolium bromide and the kosmotropic salt potassium citrate at T=298.15 K. Fluid Phase Equilib. 304, 110–120 (2011)

    Article  CAS  Google Scholar 

  17. Marcus, Y.: Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 87, 2995–2999 (1991)

    Article  CAS  Google Scholar 

  18. Guo, H., Hu, M., Li, S., Jiang, Y., Wang, M.: Liquid–liquid–solid equilibrium of the quaternary systems sodium chloride + rubidium chloride + propanols + water at 25 °C. J. Chem. Eng. Data 53, 131–135 (2008)

    Article  CAS  Google Scholar 

  19. Lide, D.R.: CRC Handbook of Chemistry and Physics, 87th edn. Taylor and Francis, Boca Raton (2007)

    Google Scholar 

  20. Wang, Y., Yan, Y., Hu, S., Xu, X.: Phase diagrams of ammonium sulfate + ethanol/1-propanol/2-propanol + water aqueous two phase systems at 298.15 K and correlation. J. Chem. Eng. Data 55, 876–881 (2010)

    Article  CAS  Google Scholar 

  21. Zafarani-Moattar, M.T., Nemati-Kande, E.: Thermodynamic studies on the complete phase diagram of aqueous two phase system containing polyethylene glycol dimethyl ether 2000 and di-potassium hydrogen phosphate at different temperatures. Calphad 35, 165–172 (2011)

    Article  CAS  Google Scholar 

  22. Zafarani-Moattar, M.T., Nemati-Kande, E.: Study of liquid–liquid and liquid–solid equilibria of the ternary aqueous system containing poly ethylene glycol dimethyl ether 2000 and tri-potassium phosphate at different temperatures: experiment and correlation. Calphad 34, 478–486 (2010)

    Article  CAS  Google Scholar 

  23. Graber, T.A., Taboada, M.E.: Liquid–liquid equilibrium of the poly(ethylene glycol) + sodium nitrate + water system at 298.15 K. J. Chem. Eng. Data 45, 182–184 (2000)

    Article  CAS  Google Scholar 

  24. Tubio, G., Pellegrini, L., Nerli, B.B., Pico, G.A.: Liquid–liquid equilibria of aqueous two-phase systems containing poly(ethylene glycols) of different molecular weight and sodium citrate. J. Chem. Eng. Data 51, 209–212 (2006)

    Article  CAS  Google Scholar 

  25. Zafarani-Moattar, M.T., Hamidi, A.A.: Liquid–liquid equilibria of aqueous two-phase poly(ethylene glycol)–potassium citrate system. J. Chem. Eng. Data 48, 262–265 (2003)

    Article  CAS  Google Scholar 

  26. Foroutan, M., Heidari, N., Mohammadlou, M.: Liquid–liquid equilibria of aqueous two-phase poly(ethylene glycol)–potassium citrate system. J. Chem. Eng. Data 53, 242–246 (2008)

    Article  CAS  Google Scholar 

  27. Waziri, S.M., Abu-Sharkh, B.F., Ali, S.A.: The effect of pH and salt concentration on the coexistence curves of aqueous two-phase systems containing a pH responsive copolymer and polyethylene glycol. Fluid Phase Equilib. 205, 275–290 (2003)

    Article  CAS  Google Scholar 

  28. Pang, F.M., Seng, C.E., Teng, T.T., Ibrahim, M.H.: Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 K to 333.15 K. J. Mol. Liq. 136, 71–78 (2007)

    Article  CAS  Google Scholar 

  29. Chen, C.C., Britt, H.I., Boston, J.F., Evans, L.B.: Local composition model for excess Gibbs energy of electrolyte systems. AIChE J. 28, 588–596 (1982)

    Article  CAS  Google Scholar 

  30. Chen, C.C., Evans, L.B.: A local composition model for excess Gibbs energy of electrolyte systems. AIChE J. 32, 444–454 (1986)

    Article  CAS  Google Scholar 

  31. Pitzer, K.S.: Electrolytes. Dilute solutions to fused salts. J. Am. Chem. Soc. 102, 2902–2906 (1980)

    Article  CAS  Google Scholar 

  32. van Bochove, G.H., Krooshof, G.J.P., de Loos, Th.W.: Modelling of liquid–liquid equilibria of mixed solvent electrolyte systems using the extended electrolyte NRTL. Fluid Phase Equilib. 171, 45–58 (2000)

    Article  Google Scholar 

  33. Simonson, J.M., Pitzer, K.S.: Thermodynamics of multicomponent, miscible ionic systems: The system lithium nitrate–potassium nitrate–water. J. Phys. Chem. 90, 3009–3013 (1986)

    Article  CAS  Google Scholar 

  34. Sadeghi, R., Golabiazar, R., Parsi, E.: Vapor–liquid equilibria, density, and speed of sound of aqueous solutions of sodium dihydrogen citrate or disodium hydrogen citrate. J. Chem. Eng. Data 55, 5874–5882 (2010)

    Article  CAS  Google Scholar 

  35. Gmehling, J., Onken, U.: Vapor–Liquid Equilibrium Data Collection—Aqueous–Organic Systems. Chemistry Data Series, vol. 1. DECHEMA, Frankfurt, Germany (1977)

    Google Scholar 

  36. Tsuji, T., Hasegawa, K., Hiaki, T., Hongo, M.: Isothermal vapor–liquid equilibria for the 2-propanol + water system containing poly(ethylene glycol) at 298.15 K. J. Chem. Eng. Data 41, 956–960 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemayat Shekaari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemati-Kande, E., Shekaari, H. Liquid–Liquid Equilibria of Some Aliphatic Alcohols + Disodium Hydrogen Citrate + Water Ternary Systems at 298.15 K. J Solution Chem 41, 1649–1663 (2012). https://doi.org/10.1007/s10953-012-9893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9893-5

Keywords

Navigation