Skip to main content

Advertisement

Log in

Effective Solvent Cavity for 1-Hydroxy-9,10-anthraquinone Derivatives in Methanol/Water, Using a Local QSAR Study Method

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The Onsager reaction field model was applied to 1-hydroxy-9,10-anthraquinone derivatives dissolved in binary solvent mixtures of methanol/water. Each solution was placed in a cavity surrounded by a continuous dielectric constant medium, and then the quantum chemical descriptors of the solute were calculated. Multiple linear regression was used to perform the QSPR model calculations in order to predict the acidity constants of the solutes. The resultant hexa-parametric model was able to predict the acidity constants within absolute average deviations less than 1.82 %. The proposed model suggests that the acidic property of the solute is controlled by solvation processes through coulombic interactions as well as orbital energies. It was found that the solvent lowered the excited orbital energy states of all 1-hydroxy-9,10-anthraquinone derivatives. The model proposes that an effective solvation cavity needs more methanol molecules than water in order to increase the solvation energy in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

N :

Number of components

R 2 :

Correlation coefficient

SE:

Standard error of regression

F :

Fisher’s F-ratio

\(Q_{\mathrm{LOO}}^{2}\) :

Correlation coefficients of leave-one-out cross-validations

\(Q_{\mathrm{LTO}}^{2}\) :

Correlation coefficients of leave-three-out cross-validations

pK a :

Acidity constant

AQ:

Anthraquinone derivatives

rms:

Root mean square

s:

Surface potential

a:

Acidity

LOO:

Leave one out

LTO:

Leave three out

+:

Positive potential energy surface value

−:

Negative potential energy surface value

References

  1. Zhao, Y.H., Yuan, L.-H., Wang, L.-S.: Quantitative structure–activity relationships of organic acids and bases. Bull. Environ. Contam. Toxicol. 57, 242–249 (1996)

    Article  CAS  Google Scholar 

  2. Rochester, G.H.: Acidity Functions. Academic Press, New York (1971)

    Google Scholar 

  3. Hammet, L.P.: Physical Organic Chemistry. McGraw-Hill, New York (1940)

    Google Scholar 

  4. Hansch, C., Fujita, T.: Rho-sigma-pi analysis. A method for the correlation of biological activity with chemical structure. J. Am. Chem. Soc. 86, 1616–1626 (1964)

    Article  CAS  Google Scholar 

  5. Katritzky, A.R., Lomaka, A., Peturkhin, R., Jain, R., Karelson, M., Visser, A.E., Rogers, R.D.: QSPR correlation of the melting point for pyridinium bromide, potential ionic liquids. J. Chem. Inf. Comput. Sci. 42, 71–74 (2002)

    Article  CAS  Google Scholar 

  6. Staikova, M., Messih, P., Lei, Y.D., Wania, F., Donalson, D.J.: Prediction of subcooled vapour pressures of non-polar organic compounds using a one-parameter QSPR. J. Chem. Eng. Data 50, 438–443 (2005)

    Article  CAS  Google Scholar 

  7. Wang, J., Zhang, L., Yang, G., Zhan, C.-G.: Quantitative structure–activity relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors. A study of quantum chemical descriptors from density functional theory. J. Chem. Inf. Comput. Sci. 44, 2099–2105 (2004)

    Article  Google Scholar 

  8. Zanbower, E.D., Kam, C.M., Powers, J.C., Zalkow, L.H.: Novel anthraquinone inhibitors of human leukocyte elastase and cathepsin G. J. Med. Chem. 35, 1597–1605 (1992)

    Article  Google Scholar 

  9. Shamsipur, M., Ghasemi, J., Tamaddon, F., Sharghi, H.: Spectrophotometric determination of acidity constants of some anthraquinones and anthrones in methanol water mixtures. Talanta 40, 697–699 (1993)

    Article  CAS  Google Scholar 

  10. Rouhani, S., Rezaei, R., Sharghi, H., Shamsipur, M., Rounaghi, G.: Spectrophotometric determination of acidity constants of some anthraquinone derivatives in binary methanol–water mixtures. Microchem. J. 52, 22–27 (1995)

    Article  CAS  Google Scholar 

  11. Almasifar, D., Forghaniha, A., Khojasteh, Z., Ghasemi, J., Sharghi, H., Shamsipur, M.: Spectrophotometric determination of acidity constants of some recently synthesized anthraquinones methanol + water. J. Chem. Eng. Data 42, 1212–1215 (1997)

    Article  CAS  Google Scholar 

  12. Shamsipur, M., Hemmateenejad, B., Akhond, M., Shrghi, H.: Quantitative structure–property relationship study of acidity constants of some 9,10-anthraquinone derivatives using multiple linear regression and partial least squares procedures. Talanta 54, 1113–1120 (2001)

    Article  CAS  Google Scholar 

  13. Hemmateenejad, B., Safarpour, M.A., Taghavi, F., Jamali, M.: Application of ab initio theory for the prediction of acidity constant of 1-hydroxy-9,10-anthraquinone derivatives using neural network modeling method. J. Mol. Struct., Theochem 635, 183–190 (2003)

    Article  CAS  Google Scholar 

  14. Wong, M.W., Frisch, M.J., Wiberg, K.B.: Solvent effects. 1. The mediation of electrostatic effects by solvent. J. Am. Chem. Soc. 113, 4776–4782 (1991)

    Article  CAS  Google Scholar 

  15. Onsager, L.: Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486–1493 (1936)

    Article  CAS  Google Scholar 

  16. Politzer, P., Lane, P., Murray, J.S., Brink, T.: Investigation of relationships between solute molecule surface electrostatic potentials and solubilities in supercritical fluids. J. Phys. Chem. 96, 7938–7943 (1992)

    Article  CAS  Google Scholar 

  17. Parr, R.G., Chattaraj, P.K.: Principal of maximum hardness. J. Am. Chem. Soc. 113, 1854–1855 (1991)

    Article  CAS  Google Scholar 

  18. Pearson, R.G.: Chap. 2 in: Maksic, Z.B. (ed.) Theoretical Models of Chemical Bonding: Absolute Electronegativity and Absolute Hardness, Part II. Springer, Berlin (1990)

    Google Scholar 

  19. Thanikaivelan, P., Subramanian, V., Rao, J.R., Nair, B.U.: Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem. Phys. Lett. 323, 59–70 (2000)

    Article  CAS  Google Scholar 

  20. Murray, J.S., Plitzer, P.: Chap. 8 in: Quantitative Treatments of Solute/Solvent Interactions: A General Interaction Properties Function (GIPF). Elsevier, Amsterdam (1994)

    Google Scholar 

  21. Murray, J.S., Brinck, T., Lane, P., Paulsen, K., Politzer, P.: Statistically-based interaction indices derived from molecular surface electrostatic potentials: a general interaction properties function (GIPF). J. Mol. Struct., Theochem 307, 55–64 (1994)

    Article  Google Scholar 

  22. Murray, J.S., Plitzer, P.: Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases. J. Mol. Struct., Theochem 425, 107–114 (1998)

    Article  CAS  Google Scholar 

  23. Bulat, F.A., Labbe, A.T., Brinck, T., Murray, J.S., Politzer, P.: Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 16, 1679–1691 (2010)

    Article  CAS  Google Scholar 

  24. Iosue, J.L., Benoti, D.M., Clary, D.C.: Diffusion Monte Carlo simulations of methanol–water clusters. Chem. Phys. Lett. 301, 275–280 (1999)

    Article  CAS  Google Scholar 

  25. Hemmateenejad, B.: Characterization and prediction of solute properties in methanol–water association by chemometrics analysis of the solvation data. J. Chemom. 19, 657–667 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Research Council of Zabol University for supporting this project. M. Sanchooli is thankful to Dr. Bahram Hemmateenejad for his constructive discussion and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Sanchooli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchooli, M., Razmara, Z. Effective Solvent Cavity for 1-Hydroxy-9,10-anthraquinone Derivatives in Methanol/Water, Using a Local QSAR Study Method. J Solution Chem 41, 1290–1298 (2012). https://doi.org/10.1007/s10953-012-9882-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9882-8

Keywords

Navigation