Skip to main content
Log in

Molecular Dynamics Simulations and NMR Experimental Study of Oxidized Glutathione in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

All-atom molecular simulations and NMR experiments have been used to study the conformations and interactions of oxidized glutathione (GSSG) in aqueous solution. The simulations are characterized by the radius of gyration, intramolecular distance, root-mean-square deviation and solvent-accessible surface area. The variations in these properties show time dependences. Interestingly, the two chains connected by the disulfide linkage in GSSG show different flexibilities in aqueous solution. The conformations of GSSG can convert from “extended” to “folded” states. Also, the two different kinds of amide hydrogen atoms in cysteine (Cys) and glycin (Gly) show different capabilities in forming N–H⋯O hydrogen bonds with water molecules. Temperature-dependent NMR results show agreements with the MD simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. More, S.S., Vince, R.: Design, synthesis and biological evaluation of glutathione peptidomimetics as components of anti-Parkinson prodrugs. J. Med. Chem. 51, 4581–4588 (2008)

    Article  CAS  Google Scholar 

  2. Ralat, L.A., Manevich, Y., Fisher, A.B., Colman, R.F.: Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase π with activity changes in both enzymes. Biochemistry 45, 360–372 (2006)

    Article  CAS  Google Scholar 

  3. Wang, T., An, Y., He, H., Qian, D., Cai, R.: Simultaneous determination of oxidized and reduced glutathione in eel’s (Monopterus albus) plasma by transient pseudoisotachophoresis coupled with capillary zone electrophoresis. J. Agric. Food Chem. 56, 368–373 (2008)

    Article  CAS  Google Scholar 

  4. Kibria, F.M., Lees, W.J.: Balancing conformational and oxidative kinetic traps during the folding of bovine pancreatic trypsin inhibitor (BPTI) with glutathione and glutathione disulfide. J. Am. Chem. Soc. 130, 796–797 (2008)

    Article  CAS  Google Scholar 

  5. Visioli, F., Wolfram, R., Richard, D., Abdullah, M.I.C., Crea, R.: Olive phenolics increase glutathione levels in healthy volunteers. J. Agric. Food Chem. 57, 1793–1796 (2009)

    Article  CAS  Google Scholar 

  6. Safavi, A., Maleki, N., Farjami, E., Mahyari, F.A.: Simultaneous electrochemical determination of glutathione and glutathione disulfide at a nanoscale copper hydroxide composite carbon ionic liquid electrode. Anal. Chem. 81, 7538–7543 (2009)

    Article  CAS  Google Scholar 

  7. Zhang, X., Xu, H., Dong, Z., Wang, Y., Liu, J., Shen, J.: Highly efficient dendrimer-based mimic of glutathione peroxidase. J. Am. Chem. Soc. 126, 10556–10557 (2004)

    Article  CAS  Google Scholar 

  8. Odriozola, I., Loinaz, I., Pomposo, J.A., Grande, H.J.: Gold–glutathione supramolecular hydrogels. J. Mater. Chem. 17, 4843–4846 (2007)

    Article  CAS  Google Scholar 

  9. Holland, R., Hawkins, E.A., Eggler, L., Mesecar, A.D., Fabris, D., Fishbein, J.C.: Prospective type 1 and type 2 disulfides of Keap1 protein. Chem. Res. Toxicol. 21, 2051–2060 (2008)

    Article  CAS  Google Scholar 

  10. Berg, P.A.W., Hoek, A., Visser, A.J.W.G.: Evidence for a novel mechanism of time-resolved flavin fluorescence depolarization in glutathione reductase. Biophys. J. 87, 2577–2586 (2004)

    Article  Google Scholar 

  11. Hofstetter, D., Nauser, T., Koppenol, W.H.: Hydrogen exchange equilibria in glutathione radicals: rate constants. Chem. Res. Toxicol. 23, 1596–1600 (2010)

    Article  CAS  Google Scholar 

  12. Usta, M., Wortelboer, H.M., Vervoort, J., Boersma, M.G., Rietjens, I.M.C.M., Bladeren, P.J., Cnubben, N.H.P.: Human glutathione s-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in caco-2 cells. Chem. Res. Toxicol. 20, 1895–1902 (2007)

    Article  CAS  Google Scholar 

  13. Lu, D., Liu, Z.: Dynamic redox environment-intensified disulfide bond shuffling for protein refolding in vitro: molecular simulation and experimental validation. J. Phys. Chem. B 112, 15127–15133 (2008)

    Article  CAS  Google Scholar 

  14. Enami, S., Hoffmann, M.R., Colussi, A.J.: Ozone oxidizes glutathione to a sulfonic acid. Chem. Res. Toxicol. 22, 35–40 (2009)

    Article  CAS  Google Scholar 

  15. Mahajan, S.S., Paranji, R., Mehta, R., Lyon, R.P., Atkins, W.M.: A glutathione-based hydrogel and its site-selective interactions with water. Bioconjug. Chem. 16, 1019–1026 (2005)

    Article  CAS  Google Scholar 

  16. Petzold, H., Sadler, P.J.: Oxidation induced by the antioxidantglutathione (GSH). Chem. Commun. 37, 4413–4415 (2008)

    Article  Google Scholar 

  17. Krezel, A., Wójcik, J., Maciejczyk, M., Bal, W.: Zn(II) complexes of glutathione disulfide: structural basis of elevated stabilities. Inorg. Chem. 50, 72–85 (2011)

    Article  CAS  Google Scholar 

  18. Bieri, M., Bürgi, T.: Adsorption kinetics of L-glutathione on gold and structural changes during self-assembly: an in situ ATR-IR and QCM study. Phys. Chem. Chem. Phys. 8, 513–520 (2006)

    Article  CAS  Google Scholar 

  19. Lyon, R.P.W., Atkins, M.J.: Self-assembly and gelation of oxidized glutathione in organic solvents. J. Am. Chem. Soc. 123, 4408–4413 (2001)

    Article  CAS  Google Scholar 

  20. Lampela, O., Juffer, A.H., Rauk, A.: Conformational analysis of glutathione in aqueous solution with molecular dynamics. J. Phys. Chem. A 107, 9208–9220 (2003)

    Article  CAS  Google Scholar 

  21. Kummli, D.S., Frey, H.-M., Leutwyler, S.: Accurate determination of the structure of 1,3,5-trifluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations. Chem. Phys. 367, 36–43 (2010)

    Article  CAS  Google Scholar 

  22. Morin, C., Besset, T., Moutet, J., Fayolle, M., Brückner, M., Limosin, D., Becker, K., Davioud-Charvet, E.: The aza-analogues of 1,4-naphthoquinones are potent substrates and inhibitors of plasmodial thioredoxin and glutathione reductases and of human erythrocyte glutathione reductase. J. Org. Biomol. Chem. 15, 2731–2742 (2008)

    Article  Google Scholar 

  23. Guttmann, D., Poage, G., Johnston, T., Zhitkovich, A.: Reduction with glutathione is a weakly mutagenic pathway in chromium(VI) metabolism. Chem. Res. Toxicol. 21, 2188–2194 (2008)

    Article  CAS  Google Scholar 

  24. Meredith, J.J., Dufour, A., Bruch, M.D.: Comparison of the structure and dynamics of the antibiotic peptide polymyxin B and the inactive nonapeptide in aqueous trifluoroethanol by NMR spectroscopy. J. Phys. Chem. B 113, 544–551 (2009)

    Article  CAS  Google Scholar 

  25. Campanali, A.A., Kwiecien, T.D., Hryhorczuk, L., Kodanko, J.J.: Oxidation of glutathione by [FeIV(O)(N4Py)]2+: characterization of an [FeIII(SG)(N4Py)]2+ intermediate. Inorg. Chem. 49, 4759–4761 (2010)

    Article  CAS  Google Scholar 

  26. Prabhakar, R., Vreven, T., Morokuma, K., Musaev, D.G.: Elucidation of the mechanism of selenoprotein glutathione peroxidase (GPx)-catalyzed hydrogen peroxide reduction by two glutathione molecules: a density functional study. Biochemistry 44, 11864–11871 (2005)

    Article  CAS  Google Scholar 

  27. Basu, S., Panigrahi, S., Praharaj, S., Ghosh, S.K., Pande, S., Jana, S., Pal, T.: Dipole–dipole plasmon interactions in self-assembly of gold organosol induced by glutathione. New J. Chem. 30, 1333–1339 (2006)

    Article  CAS  Google Scholar 

  28. Mishra, D., Mehta, A., Flora, S.J.S.: Reversal of arsenic-induced hepatic apoptosis with combined administration of DMSA and its analogues in guinea pigs: role of glutathione and linked enzymes. Chem. Res. Toxicol. 21, 400–407 (2008)

    Article  CAS  Google Scholar 

  29. Berweger, C.D., Gunsteren, W.F., Müller-Plathe, F.: Force field parametrization by weak coupling: re-engineering SPC water. Chem. Phys. Lett. 232, 429–436 (1995)

    Article  CAS  Google Scholar 

  30. Mark, P., Nilsson, L.: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105, 9954–9960 (2001)

    CAS  Google Scholar 

  31. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)

    Article  CAS  Google Scholar 

  32. Jorgensen, W.L., Swenson, C.J.: Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J. Am. Chem. Soc. 107, 569–578 (1985)

    Article  CAS  Google Scholar 

  33. Dudek, M.J., Ramnarayan, K., Ponder, J.W.: Protein structure prediction using a combination of sequence homology and global energy minimization: II. Energy functions. J. Comput. Chem. 19, 548–573 (1998). Available from http://dasher.wustl.edu/tinker

    Article  CAS  Google Scholar 

  34. The PDB website is http://www.rcsb.org/pdb/

  35. Luzar, A., Chandler, D.: Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 98, 8160–8173 (1993)

    Article  CAS  Google Scholar 

  36. Zhang, R., Li, H., Lei, Y., Han, S.: Structures and interactions in N-methylacetamide–water mixtures studied by IR spectra and density functional theory. J. Mol. Struct. 693, 17–25 (2004)

    Article  CAS  Google Scholar 

  37. Lei, Y., Li, H., Pan, H., Han, S.: Structures and hydrogen bonding analysis of N,N-dimethylformamide and N,N-dimethylformamide–water mixtures by molecular dynamics simulations. J. Phys. Chem. A 107, 1574–1583 (2003)

    Article  CAS  Google Scholar 

  38. Zhang, R., Li, H., Lei, Y., Han, S.: All-atom molecular dynamic simulations and relative NMR spectra study of weak C–H⋯O contacts in amide–water system. J. Phys. Chem. B 109, 7482–7487 (2005)

    Article  CAS  Google Scholar 

  39. Zhang, R., Zheng, D., Pan, Y., Luo, S., Wu, W., Li, H.: All-atom simulation and excess properties study on intermolecular interactions of amide–water system. J. Mol. Struct. 875, 96–100 (2008)

    Article  CAS  Google Scholar 

  40. Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558 (1983)

    Article  CAS  Google Scholar 

  41. Zheng, G., Stait-Gardner, T., Anil Kumar, P.G., Torres, A.M., Price, W.S.: PGSTE-WATERGATE: an STE-based PGSE NMR sequence with excellent solvent suppression. J. Magn. Reson. 191, 159–163 (2008)

    Article  CAS  Google Scholar 

  42. Clairac, R.P.L., Geierstanger, B.H., Mrksich, M., Dervan, P.B., Wemmer, D.E.: NMR characterization of hairpin polyamide complexes with the minor groove of DNA. J. Am. Chem. Soc. 119, 7909–7916 (1997)

    Article  Google Scholar 

  43. Lei, Y., Li, H., Zhang, R., Han, S.: Molecular dynamics simulations of biotin in aqueous solution. J. Phys. Chem. B 108, 10131–10137 (2004)

    Article  CAS  Google Scholar 

  44. Uemura, K., Kitagawa, S., Fukui, K., Saito, K.: A contrivance for a dynamic porous framework: cooperative guest adsorption based on square grids connected by amide–amide hydrogen bonds. J. Am. Chem. Soc. 126, 3817–3828 (2004)

    Article  CAS  Google Scholar 

  45. Mancin, F., Chim, J.: An artificial guanine that binds cytidine through the cooperative interaction of metal coordination and hydrogen bonding. J. Am. Chem. Soc. 124, 10946–10947 (2002)

    Article  CAS  Google Scholar 

  46. Morgado, C.A., Hillier, I.H., Burton, N.A., McDouall, J.J.: A QM/MM study of fluoroaromatic interactions at the binding site of carbonic anhydrase II, using a DFT method corrected for dispersive interactions. Phys. Chem. Chem. Phys. 10, 2706–2714 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No: 20903026), the Doctoral Scientific Research Foundation of the Natural Science Foundation of Guangdong Province, China (7301567), Science and Technology Planning Project of Guangdong Provine (2007B030702007), and the Faculty Construction Foundation of Guangdong Pharmaceutical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhang.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(DOC 54 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Huang, J., Meng, X. et al. Molecular Dynamics Simulations and NMR Experimental Study of Oxidized Glutathione in Aqueous Solution. J Solution Chem 41, 879–887 (2012). https://doi.org/10.1007/s10953-012-9835-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9835-2

Keywords

Navigation