Abstract
All-atom molecular simulations and NMR experiments have been used to study the conformations and interactions of oxidized glutathione (GSSG) in aqueous solution. The simulations are characterized by the radius of gyration, intramolecular distance, root-mean-square deviation and solvent-accessible surface area. The variations in these properties show time dependences. Interestingly, the two chains connected by the disulfide linkage in GSSG show different flexibilities in aqueous solution. The conformations of GSSG can convert from “extended” to “folded” states. Also, the two different kinds of amide hydrogen atoms in cysteine (Cys) and glycin (Gly) show different capabilities in forming N–H⋯O hydrogen bonds with water molecules. Temperature-dependent NMR results show agreements with the MD simulations.
Similar content being viewed by others
References
More, S.S., Vince, R.: Design, synthesis and biological evaluation of glutathione peptidomimetics as components of anti-Parkinson prodrugs. J. Med. Chem. 51, 4581–4588 (2008)
Ralat, L.A., Manevich, Y., Fisher, A.B., Colman, R.F.: Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase π with activity changes in both enzymes. Biochemistry 45, 360–372 (2006)
Wang, T., An, Y., He, H., Qian, D., Cai, R.: Simultaneous determination of oxidized and reduced glutathione in eel’s (Monopterus albus) plasma by transient pseudoisotachophoresis coupled with capillary zone electrophoresis. J. Agric. Food Chem. 56, 368–373 (2008)
Kibria, F.M., Lees, W.J.: Balancing conformational and oxidative kinetic traps during the folding of bovine pancreatic trypsin inhibitor (BPTI) with glutathione and glutathione disulfide. J. Am. Chem. Soc. 130, 796–797 (2008)
Visioli, F., Wolfram, R., Richard, D., Abdullah, M.I.C., Crea, R.: Olive phenolics increase glutathione levels in healthy volunteers. J. Agric. Food Chem. 57, 1793–1796 (2009)
Safavi, A., Maleki, N., Farjami, E., Mahyari, F.A.: Simultaneous electrochemical determination of glutathione and glutathione disulfide at a nanoscale copper hydroxide composite carbon ionic liquid electrode. Anal. Chem. 81, 7538–7543 (2009)
Zhang, X., Xu, H., Dong, Z., Wang, Y., Liu, J., Shen, J.: Highly efficient dendrimer-based mimic of glutathione peroxidase. J. Am. Chem. Soc. 126, 10556–10557 (2004)
Odriozola, I., Loinaz, I., Pomposo, J.A., Grande, H.J.: Gold–glutathione supramolecular hydrogels. J. Mater. Chem. 17, 4843–4846 (2007)
Holland, R., Hawkins, E.A., Eggler, L., Mesecar, A.D., Fabris, D., Fishbein, J.C.: Prospective type 1 and type 2 disulfides of Keap1 protein. Chem. Res. Toxicol. 21, 2051–2060 (2008)
Berg, P.A.W., Hoek, A., Visser, A.J.W.G.: Evidence for a novel mechanism of time-resolved flavin fluorescence depolarization in glutathione reductase. Biophys. J. 87, 2577–2586 (2004)
Hofstetter, D., Nauser, T., Koppenol, W.H.: Hydrogen exchange equilibria in glutathione radicals: rate constants. Chem. Res. Toxicol. 23, 1596–1600 (2010)
Usta, M., Wortelboer, H.M., Vervoort, J., Boersma, M.G., Rietjens, I.M.C.M., Bladeren, P.J., Cnubben, N.H.P.: Human glutathione s-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in caco-2 cells. Chem. Res. Toxicol. 20, 1895–1902 (2007)
Lu, D., Liu, Z.: Dynamic redox environment-intensified disulfide bond shuffling for protein refolding in vitro: molecular simulation and experimental validation. J. Phys. Chem. B 112, 15127–15133 (2008)
Enami, S., Hoffmann, M.R., Colussi, A.J.: Ozone oxidizes glutathione to a sulfonic acid. Chem. Res. Toxicol. 22, 35–40 (2009)
Mahajan, S.S., Paranji, R., Mehta, R., Lyon, R.P., Atkins, W.M.: A glutathione-based hydrogel and its site-selective interactions with water. Bioconjug. Chem. 16, 1019–1026 (2005)
Petzold, H., Sadler, P.J.: Oxidation induced by the antioxidantglutathione (GSH). Chem. Commun. 37, 4413–4415 (2008)
Krezel, A., Wójcik, J., Maciejczyk, M., Bal, W.: Zn(II) complexes of glutathione disulfide: structural basis of elevated stabilities. Inorg. Chem. 50, 72–85 (2011)
Bieri, M., Bürgi, T.: Adsorption kinetics of L-glutathione on gold and structural changes during self-assembly: an in situ ATR-IR and QCM study. Phys. Chem. Chem. Phys. 8, 513–520 (2006)
Lyon, R.P.W., Atkins, M.J.: Self-assembly and gelation of oxidized glutathione in organic solvents. J. Am. Chem. Soc. 123, 4408–4413 (2001)
Lampela, O., Juffer, A.H., Rauk, A.: Conformational analysis of glutathione in aqueous solution with molecular dynamics. J. Phys. Chem. A 107, 9208–9220 (2003)
Kummli, D.S., Frey, H.-M., Leutwyler, S.: Accurate determination of the structure of 1,3,5-trifluorobenzene by femtosecond rotational Raman coherence spectroscopy and ab initio calculations. Chem. Phys. 367, 36–43 (2010)
Morin, C., Besset, T., Moutet, J., Fayolle, M., Brückner, M., Limosin, D., Becker, K., Davioud-Charvet, E.: The aza-analogues of 1,4-naphthoquinones are potent substrates and inhibitors of plasmodial thioredoxin and glutathione reductases and of human erythrocyte glutathione reductase. J. Org. Biomol. Chem. 15, 2731–2742 (2008)
Guttmann, D., Poage, G., Johnston, T., Zhitkovich, A.: Reduction with glutathione is a weakly mutagenic pathway in chromium(VI) metabolism. Chem. Res. Toxicol. 21, 2188–2194 (2008)
Meredith, J.J., Dufour, A., Bruch, M.D.: Comparison of the structure and dynamics of the antibiotic peptide polymyxin B and the inactive nonapeptide in aqueous trifluoroethanol by NMR spectroscopy. J. Phys. Chem. B 113, 544–551 (2009)
Campanali, A.A., Kwiecien, T.D., Hryhorczuk, L., Kodanko, J.J.: Oxidation of glutathione by [FeIV(O)(N4Py)]2+: characterization of an [FeIII(SG)(N4Py)]2+ intermediate. Inorg. Chem. 49, 4759–4761 (2010)
Prabhakar, R., Vreven, T., Morokuma, K., Musaev, D.G.: Elucidation of the mechanism of selenoprotein glutathione peroxidase (GPx)-catalyzed hydrogen peroxide reduction by two glutathione molecules: a density functional study. Biochemistry 44, 11864–11871 (2005)
Basu, S., Panigrahi, S., Praharaj, S., Ghosh, S.K., Pande, S., Jana, S., Pal, T.: Dipole–dipole plasmon interactions in self-assembly of gold organosol induced by glutathione. New J. Chem. 30, 1333–1339 (2006)
Mishra, D., Mehta, A., Flora, S.J.S.: Reversal of arsenic-induced hepatic apoptosis with combined administration of DMSA and its analogues in guinea pigs: role of glutathione and linked enzymes. Chem. Res. Toxicol. 21, 400–407 (2008)
Berweger, C.D., Gunsteren, W.F., Müller-Plathe, F.: Force field parametrization by weak coupling: re-engineering SPC water. Chem. Phys. Lett. 232, 429–436 (1995)
Mark, P., Nilsson, L.: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105, 9954–9960 (2001)
Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)
Jorgensen, W.L., Swenson, C.J.: Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J. Am. Chem. Soc. 107, 569–578 (1985)
Dudek, M.J., Ramnarayan, K., Ponder, J.W.: Protein structure prediction using a combination of sequence homology and global energy minimization: II. Energy functions. J. Comput. Chem. 19, 548–573 (1998). Available from http://dasher.wustl.edu/tinker
The PDB website is http://www.rcsb.org/pdb/
Luzar, A., Chandler, D.: Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 98, 8160–8173 (1993)
Zhang, R., Li, H., Lei, Y., Han, S.: Structures and interactions in N-methylacetamide–water mixtures studied by IR spectra and density functional theory. J. Mol. Struct. 693, 17–25 (2004)
Lei, Y., Li, H., Pan, H., Han, S.: Structures and hydrogen bonding analysis of N,N-dimethylformamide and N,N-dimethylformamide–water mixtures by molecular dynamics simulations. J. Phys. Chem. A 107, 1574–1583 (2003)
Zhang, R., Li, H., Lei, Y., Han, S.: All-atom molecular dynamic simulations and relative NMR spectra study of weak C–H⋯O contacts in amide–water system. J. Phys. Chem. B 109, 7482–7487 (2005)
Zhang, R., Zheng, D., Pan, Y., Luo, S., Wu, W., Li, H.: All-atom simulation and excess properties study on intermolecular interactions of amide–water system. J. Mol. Struct. 875, 96–100 (2008)
Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558 (1983)
Zheng, G., Stait-Gardner, T., Anil Kumar, P.G., Torres, A.M., Price, W.S.: PGSTE-WATERGATE: an STE-based PGSE NMR sequence with excellent solvent suppression. J. Magn. Reson. 191, 159–163 (2008)
Clairac, R.P.L., Geierstanger, B.H., Mrksich, M., Dervan, P.B., Wemmer, D.E.: NMR characterization of hairpin polyamide complexes with the minor groove of DNA. J. Am. Chem. Soc. 119, 7909–7916 (1997)
Lei, Y., Li, H., Zhang, R., Han, S.: Molecular dynamics simulations of biotin in aqueous solution. J. Phys. Chem. B 108, 10131–10137 (2004)
Uemura, K., Kitagawa, S., Fukui, K., Saito, K.: A contrivance for a dynamic porous framework: cooperative guest adsorption based on square grids connected by amide–amide hydrogen bonds. J. Am. Chem. Soc. 126, 3817–3828 (2004)
Mancin, F., Chim, J.: An artificial guanine that binds cytidine through the cooperative interaction of metal coordination and hydrogen bonding. J. Am. Chem. Soc. 124, 10946–10947 (2002)
Morgado, C.A., Hillier, I.H., Burton, N.A., McDouall, J.J.: A QM/MM study of fluoroaromatic interactions at the binding site of carbonic anhydrase II, using a DFT method corrected for dispersive interactions. Phys. Chem. Chem. Phys. 10, 2706–2714 (2008)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No: 20903026), the Doctoral Scientific Research Foundation of the Natural Science Foundation of Guangdong Province, China (7301567), Science and Technology Planning Project of Guangdong Provine (2007B030702007), and the Faculty Construction Foundation of Guangdong Pharmaceutical University.
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Below are the links to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zhang, R., Huang, J., Meng, X. et al. Molecular Dynamics Simulations and NMR Experimental Study of Oxidized Glutathione in Aqueous Solution. J Solution Chem 41, 879–887 (2012). https://doi.org/10.1007/s10953-012-9835-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-012-9835-2