Skip to main content
Log in

Affinity of An(VI) for N4-Tetradentate Donor Ligands: Complexation of the Actinyl(VI) Ions with N4-Tetradentate Ligands

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this report the affinity of four N4-tetradentate ligands that incorporate the 2-methylpyridyl functionality with hexavalent actinides \((\mathrm{AnO}_{2}^{2+})\) has been investigated in methanol solution. The ligands studied include N,N′-bis(2-methylpyridyl)diaminoethane (BPMDAE), N,N′-bis(2-methylpyridyl)-1,3-diaminopropane (BPMDAP), N,N′-bis(2-pyridylmethyl)piperazine (BPMPIP), and trans-N,N-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (BPMDAC). Conditional stability constants describing the strength of the interaction were determined by UV–visible spectrophotometry. The log10 K 101 values for both U(VI) and Pu(VI) are comparable and show the same trend of stability with ligand structure. Dinuclear complexes are also indicated as being important. The log10 K 201 values for Pu(VI) complexation with the N4-ligands are identical for the four ligands (within experimental error), indicating that the structure of the ligand backbone has little effect on the stability of the (PuO2)2L2+ complex. The exception to this trend is the behavior of N,N′-bis(2-pyridylmethyl)piperazine (BPMPIP) with Pu(VI). This ligand displays a tendency to reduce Pu(VI) within the experimental time frame of 45 minutes. BPMPIP is the only ligand tested that contains tertiary amines in the ligand backbone. The decomposition of BPMPIP by Pu(VI) suggests a susceptibility of tertiary amines to oxidative degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nash, K.L.: Separation chemistry for lanthanides and trivalent actinides. In: Gschneider, K.A. Jr., Eyring, L., Choppin, G.R., Lander, G.H. (eds.) Handbook on the Physics and Chemistry of Rare Earths, Lanthanides/Actinides Chemistry, vol. 18, pp. 197–238. Elsevier, Amsterdam (1994)

    Google Scholar 

  2. Kaltsoyannis, N., Scott, P.: In: The F-Elements, pp. 1–84. Oxford University Press, Oxford (1999)

    Google Scholar 

  3. Hay, B.P., Hancock, R.D.: The role of donor group orientation as a factor in metal ion recognition by ligands. Coord. Chem. Rev. 212, 61–78 (2001)

    Article  CAS  Google Scholar 

  4. Sinkov, S.I., Rapko, B.M., Lumetta, G.J., Hay, B.P.: Bicyclic and acyclic diamides: comparisons of their aqueous phase binding constants with Nd(III), Am(III), Pu(IV), Np(V), Pu(VI), and U(VI). Inorg. Chem. 43, 8404–8413 (2004)

    Article  CAS  Google Scholar 

  5. Lumetta, G.J., Rapko, B.M., Hay, B.P., Garza, P.A., Hutchison, J.E., Gilbertson, R.D.: A novel bicyclic diamide with high binding affinity for trivalent f-block elements. Solvent Extr. Ion Exch. 21, 29–39 (2003)

    Article  CAS  Google Scholar 

  6. Ogden, M.D.: The effect of structural hindrance on the complexation of actinides and lanthanides by ligands containing soft nitrogen donors. Ph.D. dissertation, Washington State University (August 2009)

  7. Nash, K.L., Madic, C., Mathur, J.N., Lacquement, J.: In: Morss, L.R., Edelstein, N.M., Fuger, J. (eds.) The Chemistry of the Actinides and Transactinide Elements, vol. 4, 3rd edn., pp. 2622–2798. Springer, Dordrecht (2006)

    Chapter  Google Scholar 

  8. Newkome, G.R., Frere, Y.A., Fronczek, F.R., Gupta, V.K.: Chemistry of heterocyclic compounds. 104. “Obstacle effect” in palladium(II) complexes of tetraamine ligands with terminal pyridyl or picolyl residues. Inorg. Chem. 24, 1001–1006 (1985)

    Article  CAS  Google Scholar 

  9. Schoumacker, S., Hamelin, O., Pécaut, J., Fontecave, M.: Catalytic asymmetric sulfoxidation by chiral manganese complexes: acetylacetonate anions as chirality switches. Inorg. Chem. 42, 8110–8116 (2003)

    Article  CAS  Google Scholar 

  10. Halfen, J.A., Uhan, J.M., Fox, D.C., Mehn, M.P., Que, L. Jr.: Copper(II) complexes of pyridyl-appended diazacycloalkanes: synthesis, characterization, and application to catalytic olefin aziridination. Inorg. Chem. 39, 4913–4920 (2000)

    Article  CAS  Google Scholar 

  11. Leggett, D.J.: SQUAD: stability quotients from absorbance data. In: Leggett, D.J. (ed.) Computational Methods for the Determination of Formation Constants. Plenum, New York (1985). Chap. 6

    Chapter  Google Scholar 

  12. Rabinowitch, E., Belford, R.L.: Spectroscopy and Photochemistry of Uranyl Compounds, pp. 1–183. Pergamon, New York (1964)

    Google Scholar 

  13. Martell, A.E., Smith, R.S., Motekaitis, R.J.: NIST critically selected stability constants of metal complexes. NIST Standard Reference Database 46, Version 8.0, Maryland (2004)

  14. Kihara, S., Yoshida, Z., Aoyagi, H., Maeda, K., Shirai, O., Kitatsuji, Y., Yoshida, Y.: A critical evaluation of the redox properties of uranium, neptunium and plutonium ions in acidic aqueous solutions. Pure Appl. Chem. 71, 1771–1807 (1999)

    Article  CAS  Google Scholar 

  15. AlMahamid, I., Bercraft, K.A., Hakem, N.L., Gatti, R.C., Nitsche, H.: Stability of various plutonium valence states in the presence of NTA and EDTA. Radiochim. Acta 74, 129–134 (1996)

    CAS  Google Scholar 

  16. Reilly, S.D., Neu, M.P.: Pu(VI) hydrolysis: further evidence for a dimeric plutonyl hydroxide and contrasts with U(VI) chemistry. Inorg. Chem. 45, 1839–1846 (2006)

    Article  CAS  Google Scholar 

  17. Choppin, G.R., Thakur, P., Mathur, J.N.: Complexation thermodynamics and structural aspects of actinide–aminopolycarboxylates. Coord. Chem. Rev. 250, 936–947 (2006)

    Article  CAS  Google Scholar 

  18. Choppin, G.R.: Aspects of plutonium solution chemistry. In: Carnall, W.T., Choppin, G.R. (eds.) Plutonium Chemistry. ACS Symposium Series, vol. 216, pp. 213–230. American Chemical Society, Washington (1983). Chap. 14

    Google Scholar 

  19. Newton, T.W.: Redox reaction of plutonium ions in aqueous solutions. In: Hoffman, D.C. (ed.) Advances in Plutonium Chemistry. American Nuclear Society, La Grange Park (2002). Chap. 3

    Google Scholar 

  20. Van Horn, J.D., Huang, H.: Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data. Coord. Chem. Rev. 250, 765–775 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted at WSU and PNNL with funding provided by the U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy Research Initiative Consortium (NERI-C) program under project number DE-FG07-07ID14896.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark D. Ogden or Kenneth L. Nash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogden, M.D., Sinkov, S.I., Lumetta, G.J. et al. Affinity of An(VI) for N4-Tetradentate Donor Ligands: Complexation of the Actinyl(VI) Ions with N4-Tetradentate Ligands. J Solution Chem 41, 616–629 (2012). https://doi.org/10.1007/s10953-012-9827-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9827-2

Keywords

Navigation