Skip to main content
Log in

Thermodynamic Analysis of Homologous α-Amino Acids in Aqueous Potassium Fluoride Solutions at Different Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Partial molal volumes (\(V_{\phi} ^{0}\)) and partial molal compressibilities (\(K_{\phi} ^{0}\)) for glycine, L-alanine, L-valine and L-leucine in aqueous potassium fluoride solutions (0.1 to 0.5 mol⋅kg−1) have been measured at T=(303.15,308.15,313.15 and 318.15) K from precise density and ultrasonic speed measurements. Using these data, Hepler coefficients (\(\partial^{2}V_{\phi} ^{0}/\partial T^{2}\)), transfer volumes (\(\Delta V_{\phi} ^{0}\)), transfer compressibilities (\(\Delta K_{\phi} ^{0}\)) and hydration number (n H) have been calculated. Pair and triplet interaction coefficients have been obtained from the transfer parameters. The values of \(V_{\phi} ^{0}\) and \(K_{\phi} ^{0}\) vary linearly with increasing number of carbon atoms in the alkyl chain of the amino acids. The contributions of charged end groups (\(\mathrm{NH}_{3}^{+}\), COO), CH2 group and other alkyl chains of the amino acids have also been estimated. The results are discussed in terms of the solute–cosolute interactions and the dehydration effect of potassium fluoride on the amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kirkwood, J.G.: Theoretical studies upon dipolar ions. Chem. Rev. 24, 233–251 (1939)

    Article  CAS  Google Scholar 

  2. Lin, G., Bian, P., Lin, R.: The limiting partial molar volume and transfer partial molar volume of glycylglycine in aqueous sodium halide solutions at 298.15 K and 308.15 K. J. Chem. Thermodyn. 38, 144–151 (2006)

    Article  CAS  Google Scholar 

  3. Badarayani, R., Kumar, A.: Ionic interactions from volumetric investigations of L-alanine in NaBr, KCl, KBr and MgCl2 up to high concentrations. Fluid Phase Equilib. 201, 321–333 (2002)

    Article  CAS  Google Scholar 

  4. Shen, J.L., Li, Z.F., Wang, B.H., Zhang, Y.M.: Partial molar volumes of some amino acids and a peptide in water, DMSO, NaCl, and DMSO/NaCl aqueous solutions. J. Chem. Thermodyn. 32, 805–819 (2000)

    Article  CAS  Google Scholar 

  5. Bhat, R., Ahluwalia, J.C.: Partial molar heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K. J. Phys. Chem. 89, 1099–1105 (1985)

    Article  CAS  Google Scholar 

  6. Badarayani, R., Kumar, A.: Densities and speed of sound of glycine in concentrated aqueous NaBr, KCl, KBr and MgCl2 at T=298.15 K. J. Chem. Thermodyn. 35, 897–908 (2003)

    Article  CAS  Google Scholar 

  7. Lilley, T.H., Tasker, I.R.: Aqueous solutions containing amino acids and peptides Part 12. Enthalpy of interactions of α-alanine, α-aminobutyric, norvaline and norleucine with sodium chloride at 298.15 K. J. Chem. Soc. Faraday Trans. I 78, 1–6 (1982)

    Article  CAS  Google Scholar 

  8. Palecz, B.: Thermochemical properties of L-α-amino acids in electrolyte water mixtures. Fluid Phase Equilib. 167, 253–261 (2000)

    Article  CAS  Google Scholar 

  9. Owaga, T., Mizutani, K., Yasuda, M.: The volume, adiabatic compressibility and viscosity of amino acids in aqueous alkali chloride solutions. Bull. Chem. Soc. Jpn. 57, 2064–2068 (1984)

    Article  Google Scholar 

  10. Basumallick, I.N., Mohanty, R.K., Chakraborty, U.: Volumetric and solvation behavior of amino acids in some aqueous binaries: Part I. Glycine, DL-alanine and DL-α-aminobutyric acid in aqueous solutions of strong electrolytes. Indian J. Chem. A 25, 1089–1091 (1986)

    Google Scholar 

  11. Yang, H., Zhao, J., Dai, M.: A study on volumetric properties of the amino acid in water or in aqueous potassium chloride. Acta Chimi. Sin. 51, 112–118 (1993)

    CAS  Google Scholar 

  12. Wadi, R.K., Ramasami, R.: Partial molar volumes and adiabatic compressibilities of transfer of glycine and DL-alanine from water to aqueous sodium sulfate at 288.15, 298.15 and 308.15 K. J. Chem. Soc. Faraday Trans. 93, 243–247 (1997)

    Article  CAS  Google Scholar 

  13. Soto, A., Arce, A., Khoshkbarchi, M.K.: Experimental data and modelling of apparent molar volumes, isentropic compressibilities and refractive indices in aqueous solutions of glycine + NaCl. Biophys. Chem. 74, 165–173 (1998)

    Article  CAS  Google Scholar 

  14. Wadi, R.K., Goyal, R.K.: Densities, viscosities and application of transition-state theory for water + potassium thiocynate + amino acid solutions at 288.15–308.15 K. J. Chem. Eng. Data 37, 377–386 (1992)

    Article  CAS  Google Scholar 

  15. Wadi, R.K., Goyal, R.K.: Temperature dependence of apparent molar volume and viscosity coefficients of amino acids in aqueous potassium thiocyanate solutions from 15 °C to 35 °C. J. Solution Chem. 21, 163–170 (1992)

    Article  CAS  Google Scholar 

  16. Yan, Z., Wang, J., Kong, W., Lu, J.: Effect of temperature on volumetric and viscosity properties of some α-amino acids in aqueous calcium chloride solutions. Fluid Phase Equlib. 215, 143–150 (2004)

    Article  CAS  Google Scholar 

  17. Banipal, T.S., Kaur, D., Banipal, P.K.: Effect of magnesium acetate on the volumetric and transport behaviour of some amino acids in aqueous solutions at 298.15 K. J. Chem. Thermodyn. 38, 1214–1226 (2006)

    Article  CAS  Google Scholar 

  18. Likhodi, O., Chalikian, T.V.: Partial molar volumes and adiabatic compressibilities of a series of aliphatic amino acids and oligoglycines in D2O. J. Am. Chem. Soc. 121, 1156–1163 (1999)

    Article  CAS  Google Scholar 

  19. Zamyatnin, A.A.: Amino acid, peptide, and protein volume in solution. Annu. Rev. Biophys. Bioeng. 13, 145–165 (1984)

    Article  CAS  Google Scholar 

  20. Chalikian, T.V., Sarvazyan, A.P., Breslauer, K.J.: Hydration and partial compressibility of biological compounds. J. Biophys. Chem. 51, 89–109 (1994)

    Article  CAS  Google Scholar 

  21. Baldwin, R.L.: How Hofmeister ion interactions affect protein stability. Biophys. J. 71, 2056–2063 (1996)

    Article  CAS  Google Scholar 

  22. Zhao, H.: Effect of ions and other compatible solutes on enzyme activity and its implication for biocatalysis using ionic liquids. J. Mol. Catal., B Enzym. 37, 16–25 (2005)

    Article  CAS  Google Scholar 

  23. Rajagopal, K., Jayabalakrishnan, S.S.: Volumetric and viscometric studies of 4-amino butyric acid in aqueous solution of salbutamol sulphate at 308.15 K, 313.15 K and 318.15 K. Chin. J. Chem. Eng. 17, 796–804 (2009)

    Article  CAS  Google Scholar 

  24. Rajagopal, K., Jayabalakrishnan, S.S.: Volumetric, ultrasonic speed and viscometric studies of salbutamol sulphate in aqueous methanol solution at different temperatures. J. Chem. Thermodyn. 42, 984–993 (2010)

    Article  CAS  Google Scholar 

  25. Rajagopal, K., Jayabalakrishnan, S.S.: Effect of temperature on volumetric and viscometric properties of homologous amino acids in aqueous solutions of metformin hydrochloride. Chin. J. Chem. Eng. 18, 425–445 (2010)

    Article  CAS  Google Scholar 

  26. Rajagopal, K., Edwin Gladson, S.: Viscometric, volumetric and acoustical studies of sodium carbonate in L-histidine water solution. J. Pure Appl. Ultrason. 28, 87–92 (2006)

    CAS  Google Scholar 

  27. Rajagopal, K., Edwin Gladson, S.: Partial molar volume and partial molar compressibility of four homologous α-amino acids in aqueous sodium fluoride solutions at different temperatures. J. Chem. Thermodyn. 43, 852–867 (2011)

    Article  CAS  Google Scholar 

  28. Iqbal, M.J., Chaudhry, M.A.: Volumetric and viscometric studies of salicyl amide, salicylic acid and acetyl salicylic acid in alcohols at different temperatures. J. Chem. Eng. Data 54, 1643–1646 (2009)

    Article  CAS  Google Scholar 

  29. Evaluation of measurement data—guide to the expression of uncertainty in measurement. Report of Working Group 1 of the Joint Committee for Guides in Metrology (2008)

  30. Riyazuddeen, Bansal G.K.: Intermolecular/interionic interactions in L-leucine, L-asparagine-, and glycylglycine–aqueous electrolyte systems. Thermochim. Acta 445, 40–48 (2006)

    Article  CAS  Google Scholar 

  31. Wang, J., Yan, Z., Zhuo, K., Lu, J.: Partial molar volumes of some α-amino acids in aqueous sodium acetate solutions at 308.15 K. Biophys. Chem. 80, 179–188 (1999)

    Article  CAS  Google Scholar 

  32. Zhao, H.: Viscosity B-coefficients and standard partial molar volumes of amino acids, and their roles in interpreting the protein (enzyme) stabilization. Biophys. Chem. 122, 157–183 (2006)

    Article  CAS  Google Scholar 

  33. Pal, A., Kumar, S.: Volumetric and ultrasonic studies of some amino acids in binary aqueous solutions of MgCl2⋅6H2O at 298.15 K. J. Mol. Liq. 121, 148–155 (2005)

    Article  CAS  Google Scholar 

  34. Kharakoz, D.P.: Volumetric properties of proteins and their analogues in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70 °C. J. Phys. Chem. 95, 5634–5642 (1991)

    Article  CAS  Google Scholar 

  35. Kikuchi, M., Sakurai, M., Nitta, K.: Partial molar volumes and adiabatic compressibilities of amino acids in aqueous solutions at 5, 15, 25, 35, and 45 °C. J. Chem. Eng. Data 40, 935–942 (1995)

    Article  CAS  Google Scholar 

  36. Hepler, L.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969)

    Article  CAS  Google Scholar 

  37. Pal, A., Kumar, S.: Viscometric and volumetric studies of some amino acids in binary aqueous solutions of urea at various temperatures. J. Mol. Liq. 109, 23–31 (2004)

    Article  CAS  Google Scholar 

  38. Lark, B.S., Patyar, P., Banipal, T.S.: Thermodynamic studies on the interactions of diglycine with magnesium chloride in aqueous medium at different temperatures. J. Chem. Thermodyn. 38, 1592–1605 (2006)

    Article  CAS  Google Scholar 

  39. Millero, F.J., Surdo, A.L., Shin, C.: The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 82, 784–792 (1978)

    Article  CAS  Google Scholar 

  40. Kozak, J.J., Knight, W.S., Kauzmann, W.: Solute–solute interactions in aqueous solutions. J. Chem. Phys. 48, 675–690 (1968)

    Article  CAS  Google Scholar 

  41. McMillan, W.G., Mayer, J.E.: The statistical thermodynamics of multi component system. J. Chem. Phys. 13, 276–305 (1945)

    Article  CAS  Google Scholar 

  42. Friedman, H.L., Krishnan, C.V.: Thermodynamics of ion hydration. In: Franks, F. (ed.) Water. A Comprehensive Treatise, vol. 3, pp. 1–118. Plenum Press, New York (1973), Ch. 1

    Google Scholar 

  43. Franks, H.S., Evans, M.W.: Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507–532 (1945)

    Article  Google Scholar 

  44. Chalikian, T.V., Sarvazyan, A.P., Breslauer, K.J.: Partial molar volumes expansibilities, and compressibilities of α,ω-aminocarboxylic acids in aqueous solutions between 18 and 55 °C. J. Phys. Chem. 97, 13017–13026 (1993)

    Article  CAS  Google Scholar 

  45. Banipal, T.S., Singh, G., Lark, B.S.: Partial molal volumes of transfer of some amino acids from water to aqueous 1,4-dioxane solutions at 298.15 K. Indian J. Chem. A 39, 1011–1018 (2000)

    Google Scholar 

  46. Mishra, A.K., Ahluwalia, J.C.: Enthalpies, heat capacities and apparent molal volumes of transfer of some amino acids from water to aqueous t-butanol. J. Chem. Soc. Faraday Trans. I 77, 1469–1483 (1981)

    Article  CAS  Google Scholar 

  47. Lark, B.S., Bala, K.: Urea–glycine and urea–alanine interactions in aqueous medium. Natl. Acad. Sci. Lett. 12, 155–160 (1989)

    CAS  Google Scholar 

  48. Yan, Z., Wang, J., Zheng, H., Liu, D.: Volumetric properties of some α-amino acids in aqueous guanidine hydrochloride at 5, 15, 25 and 35 °C. J. Solution Chem. 27, 473–483 (1998)

    Article  CAS  Google Scholar 

  49. Hakin, A.W., Duke, M.M., Marty, J.L., Presuss, K.E.: Some thermodynamic properties of aqueous amino acid systems at 288.15, 298.15, 313.15 and 328.15 K: group additivity analyses of standard-state volumes and heat capacities. J. Chem. Soc. Faraday Trans. 90, 2027–2035 (1994)

    Article  CAS  Google Scholar 

  50. Hakin, A.W., Duke, M.M., Groft, L.L., Marty, J.L., Rashfeldt, M.L.: Calorimetric investigations of aqueous amino acid and dipeptide systems from 288.15 to 328.15 K. Can. J. Chem. 73, 725–734 (1995)

    Article  CAS  Google Scholar 

  51. Franks, F., Quickenden, M.A., Reig, D.S., Watson, B.: Calorimetric and volumetric studies of dilute aqueous of cycle ether derivatives. Trans. Faraday Soc. 66, 582–589 (1970)

    Article  CAS  Google Scholar 

  52. Shahidi, F., Farrell, P.G., Edwards, J.T.: Partial molar volumes of organic compounds in water. III. Carbohydrates. J. Solution Chem. 5, 807–816 (1976)

    Article  CAS  Google Scholar 

  53. Natarajan, M., Wadi, R.K., Gaur, H.C.: Apparent molar volumes and viscosities of some α- and α,ω-amino acids in aqueous ammonium chloride solutions at 298.15 K. J. Chem. Eng. Data 35, 87–93 (1990)

    Article  CAS  Google Scholar 

  54. Gurney, R.W.: Ionic Processes in Solution. McGraw-Hill, New York (1953)

    Google Scholar 

  55. Belibagli, K., Agranci, E.: Viscosities and apparent molar volumes of some amino acids in water and in 6 M guanidine hydrochloride at 25 °C. J. Solution Chem. 19, 867–882 (1990)

    Article  CAS  Google Scholar 

  56. Conway, B.E., Verrall, R.E.: Partial molar volumes and adiabatic compressibilities of tetra alkyl ammonium and ammonium salts in water. 1. Compressibility behaviour. J. Phys. Chem. 70, 3952–3961 (1966)

    Article  CAS  Google Scholar 

  57. Gekko, K., Noguchi, H.: Compressibility of globular proteins in water at 25 °C. J. Phys. Chem. 83, 2706–2714 (1979)

    Article  CAS  Google Scholar 

  58. Nain, A.K., Chand, D.: Volumetric, ultrasonic, and viscometric behaviour of glycine, DL-alanine and L-valine in aqueous 1,4-butanediol solutions at different temperatures. J. Chem. Thermodyn. 41, 243–249 (2009)

    Article  CAS  Google Scholar 

  59. Hedwig, G.R., Høiland, H.: Thermodynamic properties of peptide solutions. Part II. Partial molar isentropic pressure coefficients in aqueous solutions of some tripeptides that model protein side-chains. Biophys. Chem. 49, 175–181 (1994)

    Article  CAS  Google Scholar 

  60. Cabani, S., Conti, G., Matteoli, E.: Adiabatic and isothermal apparent molal compressibilities of organic compounds in water. I. Cyclic and open chain secondary alcohols and ethers. J. Solution Chem. 8, 11–23 (1979)

    Article  CAS  Google Scholar 

  61. Banipal, T.S., Sehgal, G.: Partial molar adiabatic compressibility of transfer of some amino acids from water to aqueous sodium chloride and aqueous glucose solutions. Thermochim. Acta 262, 175–183 (1995)

    Article  CAS  Google Scholar 

  62. Singh, M., Pandey, M., Yadav, R.K., Verma, H.S.: Thermodynamic studies of molar volume, pair and triplet interactions at increasing side chain length of α-amino acids in aqueous potassium chloride solutions at different concentration and 310.15 K. J. Mol. Liq. 131, 42–45 (2007)

    Article  Google Scholar 

  63. Banipal, T.S., Kaur, D., Banipal, P.K., Singh, G.: Thermodynamic and transport properties of L-serine and L-threonine in aqueous sodium acetate and magnesium acetate solutions at T=298.15 K. J. Chem. Thermodyn. 39, 371–384 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the reviewer and the editor for their valuable suggestions that helped us to improve the quality of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Rajagopal or S. Edwin Gladson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopal, K., Edwin Gladson, S. Thermodynamic Analysis of Homologous α-Amino Acids in Aqueous Potassium Fluoride Solutions at Different Temperatures. J Solution Chem 41, 646–679 (2012). https://doi.org/10.1007/s10953-012-9820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9820-9

Keywords

Navigation