Skip to main content
Log in

Partial Molar Isentropic Compressions of Some Tetra- and Pentapeptides in Aqueous Solution: Implications for Group Additivity Schemes for Unfolded Proteins

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Sound speeds have been measured for aqueous solutions of five tetrapeptides and five pentapeptides at T=298.15 K. The partial molar isentropic compressions at infinite dilution, \(K_{S,2}^{\circ}\), were derived for the peptides using conventional methods. The results were compared with those calculated using group additivity methods, with the amino acid side-chain contributions derived using \(K_{S,2}^{\circ}\) data reported previously for some tripeptides of sequence gly-X-gly, where X represents an amino acid, and also for some N-acetyl amino acid amides. The tripeptides are the preferred model compounds for the estimation of the side-chain contributions to \(K_{S,2}^{\circ}\) of a polypeptide. Our study also confirms that simple group additivity schemes are not feasible for the estimation of \(K_{S,2}^{\circ}\) values for polypeptides and unfolded proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prehoda, K.E., Moooberry, E.S., Markley, J.L.: Pressure denaturation of proteins: evaluation of compressibility effects. Biochemistry 37, 5785–5790 (1998)

    Article  CAS  Google Scholar 

  2. Taulier, N., Chalikian, T.V.: Compressibility of protein transitions. Biochim. Biophys. Acta 1595, 48–70 (2002)

    Article  CAS  Google Scholar 

  3. Ohmae, E., Murakami, C., Gekko, K., Kato, C.: Pressure effects on enzyme functions. J. Biol. Macromol. 7, 23–29 (2007)

    Article  CAS  Google Scholar 

  4. Heremans, K., Smeller, L.: In: Taniguchi, Y., Stanley, H.E., Ludwig, H. (eds.) Biological Systems Under Extreme Conditions: Structure and Function, p. 53. Springer, Berlin (2002)

    Google Scholar 

  5. Chalikian, T.V.: Volumetric properties of proteins. Annu. Rev. Biophys. Biomol. Struct. 32, 207–235 (2003)

    Article  CAS  Google Scholar 

  6. Gekko, K., Hasegawa, Y.: Compressibility–structure relationship of globular proteins. Biochemistry 25, 6563–6571 (1986)

    Article  CAS  Google Scholar 

  7. Chalikian, T.V., Sarvazyan, A.P., Breslauer, K.J.: Hydration and partial compressibility of biological compounds. Biophys. Chem. 51, 89–109 (1994)

    Article  CAS  Google Scholar 

  8. Kharakoz, D.P., Bychkova, V.E.: Molton globule of human a-lactalbumin: hydration, density, and compressibility of the interior. Biochemistry 36, 1882–1890 (1997)

    Article  CAS  Google Scholar 

  9. Gekko, K., Noguchi, H.: Compressibility of globular proteins in water at 25 °C. J. Phys. Chem. 83, 2706–2714 (1979)

    Article  CAS  Google Scholar 

  10. Kharakoz, D.P., Sarvazyan, A.P.: Hydrational and intrinsic compressibilities of globular proteins. Biopolymers 33, 11–26 (1993)

    Article  CAS  Google Scholar 

  11. Høiland, H., Hedwig, G.R.: In: Hinz, H.-J. (ed.) Proteins Biochemical and Physical Properties (Landolt–Börnstein, New Series, VII/2A), pp. 6-1–6-23. Springer, Berlin (2003)

    Google Scholar 

  12. Reis, J.: C.R.: Theory of partial molar properties. J. Chem. Soc. Faraday Trans. 2 78, 1595–1608 (1982)

    Article  CAS  Google Scholar 

  13. Blandamer, M.J., Davis, M.I., Douhéret, G., Reis, J.C.R.: Apparent molar isentropic compressions and expansions of solutions. Chem. Soc. Rev. 30, 8–15 (2001)

    Article  CAS  Google Scholar 

  14. Hedwig, G.R., Høiland, H.: Thermodynamic properties of peptide solutions. Part 11. Partial molar isentropic pressure coefficients in aqueous solution of some tripeptides that model protein side-chains. Biophys. Chem. 49, 175–181 (1994)

    Article  CAS  Google Scholar 

  15. Hedwig, G.R., Høiland, H.: Thermodynamic properties of peptide solutions. Part 18. Partial molar isentropic compressibilities of gly-X-gly tripeptides (X = tyr, pro, gln, asp and glu), and the peptide salts K[glyaspgly], Na[glyglugly] and glylysgly acetate in aqueous solution at 25 °C. J. Solution Chem. 34, 1297–1309 (2005)

    Article  CAS  Google Scholar 

  16. Hakin, A.W., Høiland, H., Hedwig, G.R.: Volumetric properties of some oligopeptides in aqueous solution: partial molar expansibilities and isothermal compressibilities at 298.15 K for the peptides of sequence ala(gly) n , n=1–4. Phys. Chem. Chem. Phys. 2, 4850–4857 (2000)

    Article  CAS  Google Scholar 

  17. Hedwig, G.R.: Isentropic and isothermal compressibilities of the backbone glycyl group of proteins in aqueous solution. Biophys. Chem. 124, 35–42 (2006)

    Article  CAS  Google Scholar 

  18. Hedwig, G.R., Høiland, H.: Partial molar isentropic and isothermal compressibilities of some N-acetyl amino acid amides in aqueous solution at 298.15 K. Phys. Chem. Chem. Phys. 6, 2440–2445 (2004)

    Article  CAS  Google Scholar 

  19. Mizuguchi, M., Sakurai, M., Nitta, K.: Partial molar volumes and adiabatic compressibilities of N-acetyl-DL-serinamide and N-acetyl-L-threoninamide in dilute aqueous solution. J. Solution Chem. 26, 579–594 (1997)

    Article  CAS  Google Scholar 

  20. Kharakoz, D.P.: Partial molar volumes and compressibilities of extended polypeptide chains in aqueous solution: additivity scheme and implication of protein unfolding at normal and high pressure. Biochemistry 36, 10276–10285 (1997)

    Article  CAS  Google Scholar 

  21. Kikuchi, M., Sakurai, M., Nitta, K.: Partial molar volumes and adiabatic compressibilities of amino acids in dilute aqueous solutions at 5, 15, 25, 35, and 45 °C. J. Chem. Eng. Data 40, 935–942 (1995)

    Article  CAS  Google Scholar 

  22. Chalikian, T.V., Sarvazyan, A.P., Funck, T., Breslauer, K.J.: Partial molar volumes, expansibilities, and compressibilities of oligoglycines in aqueous solutions at 18–55 °C. Biopolymers 34, 541–553 (1994)

    Article  CAS  Google Scholar 

  23. Lee, S., Tikhomirova, A., Shalvardjian, N., Chalikian, T.V.: Partial molar volumes and adiabatic compressibilities of unfolded protein states. Biophys. Chem. 134, 185–199 (2008)

    Article  CAS  Google Scholar 

  24. Privalov, P.L.: Stability of small globular proteins. Adv. Protein Chem. 33, 167–237 (1979)

    Article  CAS  Google Scholar 

  25. Hedwig, G.R.: Partial molar heat capacities and volumes of aqueous solutions of some peptides that model side-chains of proteins. J. Chem. Soc. Faraday Trans. 89, 2761–2768 (1993)

    Article  CAS  Google Scholar 

  26. Schwitzer, M.A., Hedwig, G.R.: Thermodynamic properties of peptide solutions. 16. Partial molar heat capacities and volumes of some tripeptides of sequence Gly-X-Gly in aqueous solution at 25 °C. J. Chem. Eng. Data 43, 477–481 (1998)

    Article  CAS  Google Scholar 

  27. Häckel, M., Hinz, H.-J., Hedwig, G.R.: Partial molar volumes of proteins: amino acid side-chain contributions derived from the partial molar volumes of some tripeptides over the temperature range 10–90 °C. Biophys. Chem. 82, 35–50 (1999)

    Article  Google Scholar 

  28. Häckel, M., Hinz, H.-J., Hedwig, G.R.: A new set of peptide-based group heat capacities for use in protein stability calculations. J. Mol. Biol. 291, 197–213 (1999)

    Article  Google Scholar 

  29. Hedwig, G.R., Hinz, H.-J.: Group additivity schemes for the calculation of the partial molar heat capacities and volumes of unfolded proteins in aqueous solution. Biophys. Chem. 100, 239–260 (2003)

    Article  CAS  Google Scholar 

  30. Hakin, A.W., Hedwig, G.R.: The partial molar heat capacities and volumes of some N-acetyl amino acid amides in aqueous solution over the temperature range 288.15 to 328.15 K. Phys. Chem. Chem. Phys. 2, 1795–1802 (2000)

    Article  CAS  Google Scholar 

  31. Liu, J.L., Hakin, A.W., Hedwig, G.R.: Partial molar volumes and heat capacities of the N-acetyl amide derivatives of the amino acids asparagine, glutamine, tyrosine, and lysine monohydrochloride in aqueous solution at temperatures from T=288.15 K to T=328.15 K. J. Chem. Thermodyn. 38, 1640–1650 (2006)

    Article  CAS  Google Scholar 

  32. Hedwig, G.R.: Thermodynamic properties of peptide solutions 19. Partial molar isothermal compressions at T=298.15 K of some peptides of sequence gly-X-gly in aqueous solution. J. Chem. Thermodyn. 42, 208–212 (2010)

    Article  CAS  Google Scholar 

  33. Häckel, M., Hinz, H.-J., Hedwig, G.R.: The partial molar volumes of some tetra- and pentapeptides in aqueous solution: a test of amino acid side-chain group additivity for unfolded proteins. Phys. Chem. Chem. Phys. 2, 4843–4849 (2000)

    Article  Google Scholar 

  34. Häckel, M., Hinz, H.-J., Hedwig, G.R.: Additivity of the partial molar heat capacities of the amino acid side-chains of small peptides: Implications for unfolded proteins. Phys. Chem. Chem. Phys. 2, 5463–5468 (2000)

    Article  Google Scholar 

  35. Høgseth, E., Hedwig, G., Høiland, H.: Rubidium clock sound velocity meter. Rev. Sci. Instrum. 71, 4679–4680 (2000)

    Article  Google Scholar 

  36. Horvat-Szabo, G., Høgseth, E., Høiland, H.: An automated apparatus for ultrasound velocity measurements improving the pulse-echo-overlap method to a precision better than 0.5 ppm in liquids. Rev. Sci. Instrum. 65, 1644–1648 (1994)

    Article  Google Scholar 

  37. Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66–69 (1967)

    Article  CAS  Google Scholar 

  38. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions, 3rd edn. Reinhold, New York (1958), Ch. 8

    Google Scholar 

  39. Del Grosso, V.A., Mader, C.W.: Speed of sound in pure water. J. Acoust. Soc. Am. 52, 1442–1446 (1972)

    Article  Google Scholar 

  40. Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York (1969)

    Google Scholar 

  41. Kharakoz, D.P.: Volumetric properties of proteins and their analogues in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70 °C. J. Phys. Chem. 95, 5634–5642 (1991)

    Article  CAS  Google Scholar 

  42. Kikuchi, M., Sakurai, M., Nitta, K.: Partial molar volumes and isentropic compressibilities of N-acetyl amino acid amides in dilute aqueous solutions at (5, 15, 25, 35, and 45) °C. J. Chem. Eng. Data 41, 1439–1445 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Einar Høgseth for his technical expertise in the design and maintenance of the speed of sound equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin R. Hedwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedwig, G.R., Høiland, H. Partial Molar Isentropic Compressions of Some Tetra- and Pentapeptides in Aqueous Solution: Implications for Group Additivity Schemes for Unfolded Proteins. J Solution Chem 41, 690–701 (2012). https://doi.org/10.1007/s10953-012-9818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9818-3

Keywords

Navigation