Abstract
Data have been compiled from the published literature for the partition coefficients of solutes and vapors into anhydrous tetrahydrofuran and 1,4-dioxane. The logarithms of the water-to-ether partition coefficients, log10 P, and gas-to-ether partition coefficients, log10 K, were correlated with the Abraham solvation parameter model. The derived correlations described the observed log10 P and log10 K values for both ether solvents to within average standard deviations of 0.16 log10 units or less. The log10 P correlation for tetrahydrofuran was extended to include the partition of ions by inclusion of a cation-solvent and an anion-solvent term.
Similar content being viewed by others
References
Abraham, M.H.: Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 23, 73–83 (1993)
Abraham, M.H., Le, J., Acree, W.E. Jr.: The solvation properties of the aliphatic alcohols. Collect. Czechoslov. Chem. Commun. 64, 1748–1760 (1999)
Abraham, M.H., Le, J., Acree, W.E. Jr., Carr, P.W.: Solubility of gases and vapours in propan-1-ol at 298 K. J. Phys. Org. Chem. 12, 675–680 (1999)
Abraham, M.H., Zissimos, A.M., Acree, W.E. Jr.: Partition of solutes into wet and dry ethers; an LFER analysis. New J. Chem. 27, 1041–1044 (2003)
Abraham, M.H., Green, C.E., Acree, W.E. Jr., Hernández, C.E., Roy, L.E.: Descriptors for solutes from the solubility of solids: trans-stilbene as an example. J. Chem. Soc., Perkin Trans. 2, 2677–2681 (1998)
Abraham, M.H., Acree, W.E. Jr.: Equations for the transfer of neutral molecules and ionic species from water to organic solvents. J. Org. Chem. 75, 1006–1015 (2010)
Abraham, M.H., Acree, W.E. Jr.: Solute descriptors for phenoxide anions and their use to establish correlations of rates of reactions of anions with iodomethane. J. Org. Chem. 75, 3021–3026 (2010)
Abraham, M.H., Acree, W.E. Jr.: The transfer of neutral molecules, ions and ionic species from water to wet octanol. Phys. Chem. Chem. Phys. 12, 13182–13188 (2010)
Abraham, M.H., Acree, W.E. Jr.: The transfer of neutral molecules, ions and ionic species from water to ethylene glycol and to propylene carbonate; descriptors for pyridinium cations. New J. Chem. 34, 2298–2305 (2010)
Ye, S., Saifullah, M., Grubbs, L.M., McMillan-Wiggins, M.C., Acosta, P., Mejorado, D., Flores, I., Acree, W.E. Jr., Abraham, M.H.: Determination of the Abraham model solute descriptors for 3,5-dinitro-2-methylbenzoic acid from measured solubility data in organic solvents. Phys. Chem. Liq. 49, 821–829 (2011)
Holley, K., Acree, W.E. Jr., Abraham, M.H.: Determination of the Abraham solute descriptors for 2-ethylanthraquinone based on measured solubility ratios. Phys. Chem. Liq. 49, 355–365 (2011)
Hoover, K.R., Acree, W.E. Jr., Abraham, M.H.: Mathematical correlation of phenothiazine solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 44, 367–376 (2006)
Monárrez, C.I., Stovall, D.M., Woo, J.H., Taylor, P., Acree, W.E. Jr.: Solubility of xanthene in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Phys. Chem. Liq. 40, 703–714 (2002)
Hoover, K.R., Pop, K., Acree, W.E. Jr., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 3-chlorobenzoic acid solubilities with the Abraham solvation parameter model. S. African J. Chem. 58, 25–29 (2005)
Fletcher, K.A., Coym, K.S., Roy, L.E., Hernández, C.E., McHale, M.E.R., Acree, W.E. Jr.: Solubility of thioxanthen-9-one in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Phys. Chem. Liq. 35, 243–252 (1998)
Gianni, P., Lepori, L., Matteoli, E.: Excess Gibbs energies of the ternary system 2-methoxyethanol + tetrahydrofuran + cyclohexane and other relevant binaries at 298.15 K. J. Chem. Eng. Data 55, 5441–5446 (2010)
Lepori, L., Matteoli, E., Bernazzani, L., Ceccanti, N., Conti, G., Gianni, P., Mollica, V., Tine, M.R.: Isothermal vapour/liquid equilibria of binary mixtures with dibutyl ether at 298.15 K. Phys. Chem. Chem. Phys. 2, 4837–4842 (2000)
Daniels, C.R. Charlton, A.K., Wold, R.M., Acree, W.E. Jr., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: solubilities of 3-methylbenzoic acid and 4-chlorobenzoic acid in organic solvents. Can. J. Chem. 81, 1492–1501 (2003)
Coaxum, R., Hoover, K.R., Pustejovsky, E., Stovall, D.M., Acree, W.E. Jr., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: Part 3. Mathematical correlation of 2-methylbenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 313–322 (2004)
Hoover, K.R., Coaxum, R., Pustejovsky, E., Stovall, D.M., Acree, W.E. Jr., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: Part 4. Mathematical correlation of 4-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 339–347 (2004)
Hoover, K.R., Coaxum, R., Pustejovsky, E., Acree, W.E. Jr., Abraham, M.H.: Thermochemical behavior of dissolved carboxylic acid solutes: Part 5. Mathematical correlation of 3,5-dinitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 457–466 (2004)
Daniels, C.R., Charlton, A.K., Wold, R.M., Pustejovsky, E., Furman, A.N., Bilbrey, A.C., Love, J.N., Garza, J.A., Acree, W.E. Jr., Abraham, M.H.: Mathematical correlation of naproxen solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 481–491 (2004)
Hoover, K.R., Stovall, D.M., Pustejovsky, E., Coaxum, R., Pop, K., Acree, W.E. Jr., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 2-methoxybenzoic acid and 4-methoxybenzoic acid solubilities with the Abraham solvation parameter model. Can. J. Chem. 82, 1353–1360 (2004)
Daniels, C.R., Charlton, A.K., Wold, R.M., Moreno, R.J., Acree, W.E. Jr., Abraham, M.H.: Mathematical correlation of 4-aminobenzoic acid solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 42, 633–641 (2004)
Charlton, A.K., Daniels, C.R., Wold, R.M., Pustejovsky, E., Acree, W.E. Jr., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 3-nitrobenzoic acids solubilities with the Abraham general solvation model. J. Mol. Liq. 116, 19–28 (2005)
Stovall, D.M., Acree, W.E. Jr., Abraham, M.H.: Solubility of 9-fluorenone, thianthrene and xanthene in organic solvents. Fluid Phase Equilib. 232, 113–121 (2005)
Stovall, D.M., Givens, C., Keown, S., Hoover, K.R., Barnes, R., Harris, C., Lozano, J., Nguyen, M., Rodriquez, E., Acree, W.E. Jr., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 4-chloro-3-nitrobenzoic acid and 2-chloro-5-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys. Chem. Liq. 43, 351–360 (2005)
Flanagan, K.B., Hoover, K.R., Garza, O., Hizon, A., Soto, T., Vellegas, N., Acree, W.E. Jr., Abraham, M.H.: Mathematical correlation of 1-chloroanthraquinone solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 44, 377–386 (2006)
Blake-Taylor, B.H., Deleon, V.H., Acree, W.E. Jr., Abraham, M.H.: Mathematical correlation of salicylamide solubilities in organic solvents with the Abraham solvation parameter model. Phys. Chem. Liq. 45, 389–398 (2007)
Thimmasetty, J., Subrahmanyam, C.V.S., Sathesh Babu, P.R., Maulik, M.A., Viswanath, B.A.: Solubility behavior of pimozide in polar and nonpolar solvents: partial solubility parameters approach. J. Solution Chem. 37, 1365–1378 (2008)
Bustamante, P., Pena, M.A., Barra, J.: Partial solubility parameters of piroxicam and niflumic acid. Int. J. Pharm. 174, 141–150 (1998)
Perlovich, G.L., Kurkov, S.V., Bauer-Brandl, A.: Thermodynamics of solutions II. Flurbiprofen and diflunisal as models for studying solvation of drug substances. Eur. J. Pharm. Sci. 19, 423–432 (2003)
Pena, M.A., Reillo, A., Escalera, B., Bustamante, P.: Solubility parameter of drugs for predicting the solubility profile type within a wide polarity range in solvent mixtures. Int. J. Pharm. 321, 155–161 (2006)
Li, Q.-S., Li, Z., Wang, S.: Solubility of trimethoprim (TMP) in different organic solvents from (278 to 333) K. J. Chem. Eng. Data 53, 286–287 (2008)
Wang, S., Li, Q.-S., Lin, X.Z., Wang, H.R., Liu, L.: Solubility of 3-nitrophthalic acid in different solvents between 278 K and 353 K. J. Chem. Eng. Data 52, 876–877 (2007)
Chang, Q.-L., Li, Q.-S., Wang, S., Tian, Y.-M.: Solubility of phenacetinum in methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, tetrahydrofuran, ethyl acetate, and benzene between 282.65 K and 333.70 K. J. Chem. Eng. Data 52, 1894–1896 (2007)
Huyskens, F., Morissen, H., Huyskens, P.: Solubilities of p-nitroanilines in various classes of solvents. Specific solute-solvent interactions. J. Mol. Struct. 441, 17–25 (1998)
Matsuda, H., Kaburagi, K., Matsumoto, S., Kurihara, K., Tochigi, K., Tomono, K.: Solubilities of salicylic acid in pure solvents and binary mixtures containing cosolvent. J. Chem. Eng. Data 54, 480–484 (2009)
Barra, J., Pena, M.-A., Bustamante, P.: Proposition of group molar constants for sodium to calculate the partial solubility parameters of sodium salts using the van Krevelen group contribution method. Eur. J. Pharm. Sci. 10, 153–161 (2000)
Das, B., Ghosh, R.: Salting effects of p-aminophenol in some protic solvents at 20 °C. J. Chem. Eng. Data 28, 45–47 (1983)
Bustamante, P., Romero, S., Pena, A., Escalera, B., Reillo, A.: Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane–water. J. Pharm. Sci. 87, 1590–1596 (1998)
Charlton, A.K., Daniels, C.R., Acree, W.E. Jr., Abraham, M.H.: Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of acetylsalicylic acid solubilities with the Abraham general solvation model. J. Solution Chem. 32, 1087–1101 (2003)
Abraham, M.H., Benjelloun-Dakhama, N., Gola, J.M.R., Acree, W.E. Jr., Cain W.S., Cometto-Muniz J.E.: Solvation descriptors for ferrocene, and the estimation of some physicochemical and biochemical properties. New J. Chem. 24, 825–829 (2010)
Barbosa, J., Barrón, D., Bosch, E., Rosés, M.: Resolution of acid strength in tetrahydrofuran of substituted benzoic acids. Anal. Chim. Acta 265, 157–165 (1992)
Barrón, D., Buti, S., Ruiz, M., Barbosa, J.: Preferential solvation in the THF–water mixtures. Dissociation of acid components of pH reference materials. Phys. Chem. Chem. Phys. 1, 295–298 (1999)
Garrido, G., Koort, E., Ràfols, C., Bosch, E., Rodima, T., Leito, I., Rosés, M.: Acid-base equilibria in nonpolar media. Absolute pKa scale of bases in tetrahydrofuran. J. Org. Chem. 71, 9062–9067 (2006)
Rõõm, E.-I., Kütt, A., Kaljurand, I., Koppel, I., Leito, I., Koppel, I.A., Mishima, M., Goto, K., Miyahara, Y.: Brønsted basicities of diamines in the gas phase, acetonitrile and tetrahydrofuran. Chem. Eur. J. 13, 7631–7643 (2007)
Gritzner, G.: Single-ion transfer properties of cations from water derived from electrochemical measurements. J. Chem. Eng. Data 55, 1914–1920 (2010)
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Below is the link to the electronic supplementary material. (PDF 366 kB)
10953_2011_9776_MOESM1_ESM.doc
Table S1. Experimental log10 P and log10 K Data for Solutes Dissolved in Anhydrous Tetrahydrofuran at 298 K; Table S2. Experimental log10 P and log10 K Data for Solutes Dissolved in Anhydrous Tetrahydrofuran at 298 K.
Rights and permissions
About this article
Cite this article
Saifullah, M., Ye, S., Grubbs, L.M. et al. Abraham Model Correlations for Transfer of Neutral Molecules to Tetrahydrofuran and to 1,4-Dioxane, and for Transfer of Ions to Tetrahydrofuran. J Solution Chem 40, 2082–2094 (2011). https://doi.org/10.1007/s10953-011-9776-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-011-9776-1