Skip to main content
Log in

N-Alkylamines-Based Micelles Aggregation Number Determination by Fluorescence Techniques

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Aggregation numbers of micelles based on N-alkylamines and mixed systems CTACl/N-alkylamines have been determined using fluorescence techniques. The values of aggregation number are compared as a function of hydrocarbon chain length and as a function of the molar fraction in the mixed systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Holland, P.M., Rubingh, D.N.: Mixed Surfactant Systems. American Chemical Society, Washington, DC (1992)

    Book  Google Scholar 

  2. Christian, S.D., Scamehorn, J.F.: Solubilization in Surfactant Aggregates, vol. 55. Dekker, New York (1995)

    Google Scholar 

  3. Ogino, K., Abe, M.: Mixed Surfactant Systems. Dekker, New York (1993)

    Google Scholar 

  4. Aungst, B.J., Phang, S.: Metabolism of a neurotensin (8–13) analog by intestinal and nasal enzymes, and approaches to stabilize this peptide at these absorption sites. Int. J. Pharm. 117, 95–100 (1995)

    Article  CAS  Google Scholar 

  5. Muranushi, N., Kinugawa, M., Nakajima, Y., Muranishi, S., Sekazi, H.: Mechanism for the inducement of the intestinal absorption of poorly absorbed drugs by mixed micelles. I. Effects of various lipid-bile salt mixed micelles on the intestinal absorption of streptomycin in rat. Int. J. Pharm. 4, 271–279 (1980)

    Article  CAS  Google Scholar 

  6. Muranushi, N., Kinugawa, M., Nakajima, Y., Muranishi, S., Sekazi, H.: Mechanism for the inducement of the intestinal absorption of poorly absorbed drugs by mixed micelles. II. Effect of the incorporation of various lipids on the permeability of liposomal membranes. Int. J. Pharm. 4, 281–290 (1980)

    Article  CAS  Google Scholar 

  7. García, M.T., Ribosa, I., Leal, J.S., Comelles, F.: Monomer-micelle equilibrium in the diffusion of surfactants in binary systems through collagen films. J. Am. Oil Chem. Soc. 69, 25–29 (1992)

    Article  Google Scholar 

  8. Prottey, C., Ferguson, T.: Factors which determine the skin irritation potential of soaps and detergents. J. Soc. Cosmet. Chem. Japan 26, 29–46 (1975)

    CAS  Google Scholar 

  9. Rhein, L.D., Simion, F.A., Hill, R.L., Cagan, R.H., Mattai, J., Maibach, H.I.: Human cutaneous response to a mixed surfactant system: role of solution phenomena in controlling surfactant irritation. Dermatologica 180, 18–23 (1990)

    Article  CAS  Google Scholar 

  10. Kibbey, T.C.G., Hayes, K.F.: Multicomponent analysis of the sorption of polydisperse ethoxylated nonionic surfactants to aquifer materials: equilibrium sorption behavior. Environ. Sci. Technol. 31, 1171–1177 (1997)

    Article  CAS  Google Scholar 

  11. Rosen, M.J., Cohen, A.W., Dahanayake, M., Hua, X.Y.: Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2-dodecyloxypoly(ethenoxyethanol)s, C12H25(OC2H4) x OH, in aqueous solution. J. Phys. Chem. 86, 541–545 (1982)

    Article  CAS  Google Scholar 

  12. Ueno, M., Kimoto, Y., Ikeda, Y., Momose, H., Zana, R.: Study on the aggregation number of mixed micelles in aqueous binary mixtures of the bile salts and nonionic surfactant. J. Colloid Interface Sci. 117, 179–186 (1987)

    Article  CAS  Google Scholar 

  13. Zana, R., Muto, Y., Esumi, K., Meguro, K.: Mixed micelle formation between alkyltrimethylammonium bromide and alkane-α,ω-bis(trimethylammonium) bromide in aqueous solution. J. Colloid Interface Sci. 123, 502–511 (1988)

    Article  CAS  Google Scholar 

  14. Jana, P.K., Moulik, S.P.: Employment of a useful liquid membrane electrode system to characterise the micelles of bile salts and other detergents in pure and mixed states. Colloid Polym. Sci. 272, 837–845 (1994)

    Article  CAS  Google Scholar 

  15. Furuya, H., Moroi, Y., Sugihara, G.: Micelle formation of binary-mixtures of dodecylammonium perfluoro carboxylates. Langmuir 11, 774–778 (1995)

    Article  CAS  Google Scholar 

  16. Attwood, D., Mosquera, V., Novas, L., Sarmiento, F.: Micellization in binary mixtures of amphiphilic drugs. J. Colloid Interface Sci. 179, 478–481 (1996)

    Article  CAS  Google Scholar 

  17. Moulik, S.P., Haque, M.E., Jana, P.K., Das, A.R.: Micellar properties of cationic surfactants in pure and mixed states. J. Phys. Chem. 100, 701–708 (1996)

    Article  CAS  Google Scholar 

  18. Ghosh, S., Moulik, S.P.: Interfacial and micellization behaviors of binary and ternary mixtures of amphiphiles (Tween-20, Brij-35, and sodium dodecyl sulfate) in aqueous medium. J. Colloid Interface Sci. 208, 357–366 (1998)

    Article  CAS  Google Scholar 

  19. López-Fontán, J.L., Suárez, M.J., Mosquera, V., Sarmiento, F.: Micellar behaviour of n-alkyl sulfates in binary mixed systems. J. Colloid Interface Sci. 223, 185–189 (2000)

    Article  Google Scholar 

  20. Attwood, D., Patel, H.K.: Mixed micelles of alkyltrimethylammonium bromides and chlorhexidine digluconate in aqueous solution. J. Colloid Interface Sci. 129, 222–230 (1989)

    Article  CAS  Google Scholar 

  21. Treiner, C., Makayssi, A.: Structural micellar transition for dilute solutions of long chain binary cationic surfactant systems: a conductance investigation. Langmuir 8, 794–800 (1992)

    Article  CAS  Google Scholar 

  22. López-Fontán, J.L., Suárez, M.J., Mosquera, V., Sarmiento, F.: Mixed micelles of n-alkyltrimethylammonium bromides: influence of alkyl chain length. Phys. Chem. Chem. Phys. 1, 3583–3587 (1999)

    Article  Google Scholar 

  23. Junquera, E., Aicart, E.: Mixed micellization of dodecylethyldimethylammonium bromide and dodecyltrimethylammonium bromide in aqueous solution. Langmuir 18, 9250–9258 (2002)

    Article  CAS  Google Scholar 

  24. Junquera, E., Ortega, F., Aicart, E.: Aggregation process of the mixed ternary system dodecylethyldimethylammonium bromide/dodecylpyridinium chloride/H2O: an experimental and theoretical approach. Langmuir 19, 4923–4932 (2003)

    Article  CAS  Google Scholar 

  25. Mirgorodskaya, A.B., Kudryavtseva, L.A., Ivanov, B.E.: The influence of the micellization of n-decylamine on its basicity and reactivity toward the esters of carboxylic acids. Izv. Akad. Nauk Ser. Khim. 366–370 (1996)

  26. Bakeeva, R.F., Fedorov, S.B., Kudryavtseva, L.A., Bel’skii, V.E., Ivanov, B.E.: Colloidal properties of aqueous solutions of partially protonated long-chain amines. Colloid J. USSR 46, 664–666 (1984)

    Google Scholar 

  27. Mirgorodskaya, A.B., Kudryavtseva, L.A., Zakharova, L.Y., Bel’skii, V.E.: Interaction between primary aliphatic amines and carboxylic acid esters in aqueous micellar solutions of cationic surfactants. Russ. Chem. Bull. 47, 1296–1301 (1998)

    Article  CAS  Google Scholar 

  28. Mirgorodskaya, A.B., Kudryavtseva, L.A., Zuev, Y.F., Archipov, V.P., Idiyatullin, Z.Sh.: Catalysis of the hydrolysis of phosphorus acids esters by the mixed micelles of long-chain amines and cetylpyridinium bromide. Mendeleev Commun. 196–198 (1999)

  29. Mirgorodskaya, A.B., Kudryavtseva, L.A., Zuev, Y.F., Archipov, V.P., Kudryavtsev, D.B.: The influence of hydrophobic amines on hydrolysis of bis(p-nitrophenyl) methylphosphonate in micellar solutions of cetylpyridinium bromide. Russ. Chem. Bull. 49, 270–275 (2000)

    Article  CAS  Google Scholar 

  30. Mirgorodskaya, A.B., Kudryavtseva, L.A., Zuev, Y.F., Vylegzhanina, N.N.: Effect of micellar surfactant solutions on the reactivity of long-chain amines. Zh. Fiz. Khim. 76, 2033–2037 (2002)

    CAS  Google Scholar 

  31. García-Río, L., Hervés, P., Leis, J.R., Mejuto, J.C., Rodríguez-Dafonte, P.: Reactive micelles: nitroso group transfer from N-methyl-N-nitroso-p-toluenesulfonamide to amphiphilic amines. J. Phys. Org. Chem. 17, 1067–1072 (2004)

    Article  Google Scholar 

  32. Griesser, F., Drummond, C.J.: The physicochemical properties of self-assembled surfactant aggregates as determined by some molecular spectroscopic probe techniques. J. Phys. Chem. 92, 5580–5593 (1988)

    Article  Google Scholar 

  33. Kalyanasundaram, K.: Photochemistry in Microheterogeneous Systems. Academic Press, Orlando (1987)

    Google Scholar 

  34. Mejuto, J.C., Mosquera, M., Ríos, A.M., Rodríguez-Prieto, M.F.: Fluorescence quenching in microheterogeneous media: a laboratory experiment determining micelle aggregation number. J. Chem. Educ. 72, 662–663 (1995)

    Article  Google Scholar 

  35. Ebeid, E.Z.M.: Fluorescence quenching of acridinium ions in sodium dodecyl sulfate micelles. J. Chem. Educ. 62, 165–166 (1985)

    Article  CAS  Google Scholar 

  36. Allinger, N.L.: Molecular Mechanics. American Chemical Society, Washington (1982)

    Google Scholar 

  37. Turro, N.J., Yekta, A.: Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles [7]. J. Am. Chem. Soc. 100, 5951–5952 (1978)

    Article  CAS  Google Scholar 

  38. Fendler, J.H., Fendlerm, E.J.: Catalysis in Micellar and Macromolecular Systems. Academic Press, New York (1975)

    Google Scholar 

  39. Burrows, H.D., Formosinho, S.J.: Uranyl luminescence quenching: an experiment in photochemistry and kinetics. J. Chem. Educ. 55, 125–126 (1978)

    Article  CAS  Google Scholar 

  40. García-Río, L., Leis, J.R., Mejuto, J.C., Mosquera, V., Rodríguez-Dafonte, P.: Stability of mixed micelles of cetylpyridinium chloride and linear primary alkylamines. Colloids Surf. A 309, 216–223 (2007)

    Article  Google Scholar 

  41. Okano, L.T., Quina, F.H., El Seoud, O.A.: Fluorescence and light-scattering studies of the aggregation of cationic surfactants in aqueous solution: effects of headgroup structure. Langmuir 16, 3119–3123 (2000)

    Article  CAS  Google Scholar 

  42. García-Río, L., Leis, J.R., López-Fontán, J.L., Mejuto, J.C., Mosquera, V., Rodríguez-Dafonte, P.: Mixed micelles of alkylamines and cetyltrimethylammonium chloride. J. Colloid Interface Sci. 289, 521–529 (2005)

    Article  Google Scholar 

  43. Israelachvili, J.: Intermolecular and Surface Forces. Academic Press, New York (1991)

    Google Scholar 

  44. Das Burman, A., Dey, T., Mukherjee, B., Das, A.R.: Solution properties of the binary and ternary combination of sodium dodecyl benzene sulfonate, polyoxyethylene sorbitan monolaurate, and polyoxyethylene lauryl ether. Langmuir 16, 10020–10027 (2000)

    Article  Google Scholar 

  45. Bakeeva, R.F., Fedorov, S.B., Kudryavtseva, L.A., Bel’skii, V.E., Ivanov, B.E.: Colloidal properties of aqueous solutions of partially protonated long-chain amines. Colloid J. USSR 46, 664–666 (1984)

    Google Scholar 

  46. Abu-Hamdiyyah, M., Rahman, I.A.: Strengthening of hydrophobic bonding and the increase in the degree of micellar ionization by amphiphiles and the micelle-water distribution coefficient as a function of the surfactant chain length in sodium alkyl sulfates. J. Phys. Chem. 89, 2377–2384 (1985)

    Article  CAS  Google Scholar 

  47. Carnero-Ruiz, C., Aguiar, J.: Interaction, stability, and microenvironmental properties of mixed micelles of Triton Xl00 and n-alkyltrimethylammonium bromides: influence of alkyl chain length. Langmuir 16, 7946–7953 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Manso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astray, G., Cid, A., Manso, J.A. et al. N-Alkylamines-Based Micelles Aggregation Number Determination by Fluorescence Techniques. J Solution Chem 40, 2072–2081 (2011). https://doi.org/10.1007/s10953-011-9775-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9775-2

Keywords

Navigation