Abstract
An all-atom molecular simulation and NMR experiments have been carried out to investigate the interactions and conformations of glutathione (GSH) in aqueous and DMSO solutions. The simulations started, from different initial conformations, are characterized by intramolecular distance, radius of gyration, root-mean-square deviation, and solvent-accessible surface. Interestingly, different behaviors are found in the two different solutions. GSH is highly flexible in an aqueous solution with transitions to the extended, semifolded, and folded states. However, once GSH reaches the folded state in DMSO, it remains there and becomes difficult to break down. The NMR results show agreement with the MD simulations. The water molecule is small. It is also a good proton donor and a good proton acceptor. Water molecules can easily break down the “folded” conformation. In DMSO solution, the stronger hydrogen bonds and the hydrophobic interactions are more important, which can make the GSH in the folded state stable. Variations in the distribution of conformations and the hydrogen-bonding network may play an important role in its function under physiological conditions.
Similar content being viewed by others
References
Kibria, F.M., Lees, W.J.: Balancing conformational and oxidative kinetic traps during the folding of bovine pancreatic trypsin inhibitor (BPTI) with glutathione and glutathione disulfide. J. Am. Chem. Soc. 130, 796–797 (2008)
Ralat, L.A., Manevich, Y., Fisher, A.B., Colman, R.F.: Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase π with activity changes in both enzymes. Biochem. 45, 360–372 (2006)
Berg, P.A.W., Hoek, A., Visser, A.J.W.G.: Evidence for a novel mechanism of time-resolved flavin fluorescence depolarization in glutathione reductase. Biophys. J. 87, 2577–2586 (2004)
More, S.S., Vince, R.: Design, synthesis and biological evaluation of glutathione peptidomimetics as components of anti-Parkinson prodrugs. J. Med. Chem. 51, 4581–4588 (2008)
Visioli, F., Wolfram, R., Richard, D., Abdullah, M.I.C., Crea, R.: Olive phenolics increase glutathione levels in healthy volunteers. J. Agric. Food Chem. 57, 1793–1796 (2009)
Louzada, P.R., Sebollela, A., Scaramello, M.E., Ferreira, S.T.: Predissociated dimers and molten globule monomers in the equilibrium unfolding of yeast glutathione reductase. Biophys. J. 85, 3255–3261 (2003)
Zhang, X., Xu, H., Dong, Z., Wang, Y., Liu, J., Shen, J.: Highly efficient dendrimer-based mimic of glutathione peroxidase. J. Am. Chem. Soc. 126, 10556–10557 (2004)
Odriozola, I., Loinaz, I., Pomposo, J.A., Grande, H.J.: Gold–glutathione supramolecular hydrogels. J. Mater. Chem. 17, 4843–4846 (2007)
Anderson, M.F., Nilsson, M., Sims, N.R.: Glutathione monoethylester prevents mitochondrial glutathione depletion during focal cerebral ischemia. Neurochem. Int. 44, 153–159 (2004)
Maher, P.: The effects of stress and aging on glutathione metabolism. Ageing Res. Rev. 4, 288–314 (2005)
Cunha, I., García, L.M., Guilhermino, L.: Sea-urchin (Paracentrotus lividus) glutathione S-transferases and cholinesterase activities as biomarkers of environmental contamination. J. Environ. Monit. 4, 288–294 (2005)
Shinichi, E., Hoffmann, M.R., Colussi, A.J.: Ozone oxidizes glutathione to a sulfonic acid. Chem. Res. Toxicol. 22, 35–40 (2009)
Petzold, H., Sadler, P.J.: Oxidation induced by the antioxidantglutathione (GSH). Chem. Commun. 37, 4413–4415 (2008)
Balogh, L.M., Trong, I.L., Kripps, K.A., Shireman, L.M., Stenkamp, R.E., Zhang, W., Mannervik, B., Atkins, W.M.: Substrate specificity combined with stereopromiscuity in glutathione transferase A4-4-dependent metabolism of 4-hydroxynonenal. Biochemistry 49, 1541–1548 (2010)
Mahajan, S.S., Paranji, R., Mehta, R., Lyon, R.P., Atkins, W.M.: A glutathione-based hydrogel and its site-selective interactions with water. Bioconjug. Chem. 16, 1019–1026 (2005)
Usta, M., Wortelboer, H.M., Vervoort, J., Boersma, M.G., Rietjens, I.M.C.M., Bladeren, P.J., Cnubben, N.H.P.: Human glutathione s-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in caco-2 cells. Chem. Res. Toxicol. 20, 1895–1902 (2007)
Raghunathan, S., Chandross, J., Kretsinger, R.H., Alliston, T.J., Penington, C.J., Rule, G.S.: Crystal structure of human class mu glutathione transferase GSTM2-2. Effects of lattice packing on conformational heterogeneity. J. Mol. Biol. 238, 815–832 (1994)
Bieri, M., Bürgi, T.: Adsorption kinetics of L-glutathione on gold and structural changes during self-assembly: an in situ ATR-IR and QCM study. Phys. Chem. Chem. Phys. 8, 513–520 (2006)
Meredith, J.J., Dufour, A., Bruch, M.D.: Comparison of the structure and dynamics of the antibiotic peptide polymyxin B and the inactive nonapeptide in aqueous trifluoroethanol by NMR spectroscopy. J. Phys. Chem. B 113, 544–551 (2009)
Walderhaug, H., Johannessen, E.: Partition equilibria for alcohols in reverse micellar AOT–oil–water systems studied by PGSE-FT NMR. A comparison between AOT-containing and the corresponding AOT-free systems. J. Solution Chem. 35, 979–989 (2006)
Rauk, A., Armstrong, D.A., Berges, J.: Glutathione radical: intramolecular H abstraction by the thiyl radical. Can. J. Chem. 79, 405–417 (2001)
Guttmann, D., Poage, G., Johnston, T., Zhitkovich, A.: Reduction with glutathione is a weakly mutagenic pathway in chromium(VI) metabolism. Chem. Res. Toxicol. 21, 2188–2194 (2008)
Basu, S., Panigrahi, S., Praharaj, S., Ghosh, S.K., Pande, S., Jana, S., Pal, T.: Dipole–dipole plasmon interactions in self-assembly of gold organosol induced by glutathione. New J. Chem. 30, 1333–1339 (2006)
Prabhakar, R., Vreven, T., Morokuma, K., Musaev, D.G.: Elucidation of the mechanism of selenoprotein glutathione peroxidase (GPx)-catalyzed hydrogen peroxide reduction by two glutathione molecules: a density functional study. Biochem. 44, 11864–11871 (2005)
Mahajan, S.S., Paranji, R., Mehta, R., Lyon, R.P., Atkins, W.M.: A glutathione-based hydrogel and its site-selective interactions with water. Bioconjug. Chem. 16, 1019–1026 (2005)
Lampela, O., Juffer, A.H., Rauk, A.: Conformational analysis of glutathione in aqueous solution with molecular dynamics. J. Phys. Chem. A 107, 9208–9220 (2003)
Rignanese, G., Angelis, F.D., Melchionna, S., Vita, A.D.: Glutathione transferase: a first-principles study of the active site. J. Am. Chem. Soc. 122, 11963–11970 (2000)
Ridder, L., Rietjens, I.M.C.M., Vervoort, J., Mulholland, A.J.: Quantum mechanical/molecular mechanical free energy simulations of the glutathione s-transferase (M1-1) reaction with phenanthrene 9,10-oxide. J. Am. Chem. Soc. 124, 9926–9936 (2002)
Morin, C., Besset, T., Moutet, J., Fayolle, M., Brückner, M., Limosin, D., Becker, K., Davioud-Charvet, E.: The aza-analogues of 1,4-naphthoquinones are potent substrates and inhibitors of plasmodial thioredoxin and glutathione reductases and of human erythrocyte glutathione reductase. Org. Biomol. Chem. 15, 2731–2742 (2008)
Ralat, L.A., Manevich, Y., Fisher, A.B., Colman, R.F.: direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase π with activity changes in both enzymes. Biochem. 45, 360–372 (2006)
Lei, Y., Li, H., Han, S.: An all-atom simulation study on intermolecular interaction of DMSO–water system. Chem. Phys. Lett. 380, 542–548 (2003)
Vaismant, I.I., Berkowitz, M.L.: Local structural order and molecular associations in water–DMSO mixtures. Molecular dynamics study. J. Am. Chem. Soc. 114, 7889–7896 (1992)
Berweger, C.D., Gunsteren, W.F., Müller-Plathe, F.: Force field parametrization by weak coupling re-engineering SPC water. Chem. Phys. Lett. 232, 429–436 (1995)
Mark, P., Nilsson, L.: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105, 9954–9960 (2001)
Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)
Jorgensen, W.L., Swenson, C.J.: Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J. Am. Chem. Soc. 107, 569–578 (1985)
Dudek, M.J., Ramnarayan, K., Ponder, J.W.: Protein structure prediction using a combination of sequence homology and global energy minimization: II. Energy functions. J. Comput. Chem. 19, 548–573 (1998). Available from http://dasher.wustl.edu/tinker
Lei, Y., Li, H., Zhang, R., Han, S.: Molecular dynamics simulations of biotin in aqueous solution. J. Phys. Chem. B 108, 10131–10137 (2004)
The PDB website is http://www.rcsb.org/pdb/
Connolly, M.L.: Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558 (1983)
Jiang, T., Cui, Q., Shi, G., Ma, S.: Protein folding simulations of the hydrophobic–hydrophilic model by combining tabu search with genetic algorithms. J. Chem. Phys. 119, 4592–4596 (2003)
Bastolla, U., Porto, M., Ortíz, A.R.: Local interactions in protein folding determined through an inverse folding model. Proteins 71, 278–299 (2008)
Zhang, R., Li, H., Lei, Y., Han, S.: Different weak C–H⋯O contacts in N-Methylacetamide-water system: molecular dynamics simulations and NMR experimental study. J. Phys. Chem. B 108, 12596–12601 (2004)
Zhang, R., Li, H., Lei, Y., Han, S.: All-atom molecular dynamic simulations and relative NMR spectra study of weak C–H⋯O contacts in amide–water system. J. Phys. Chem. B 109, 7482–7487 (2005)
Viswanathan, R., Asensio, A., Dannenberg, J.J.: Cooperative hydrogen-bonding in models of antiparallel β-sheets. J. Phys. Chem. A 108, 9205–9212 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, R., Wu, W. & Luo, S. Different Behaviors of Glutathione in Aqueous and DMSO Solutions: Molecular Dynamics Simulation and NMR Experimental Study. J Solution Chem 40, 1784–1795 (2011). https://doi.org/10.1007/s10953-011-9752-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-011-9752-9